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Many numerical methods for systems of convection–diffusion equations are based
on an operator splitting formulation, where convective and diffusive forces are ac-
counted for in separate substeps. We describe the nonlinear mechanism of the splitting
error in such numerical methods in the one-dimensional case, a mechanism that is
intimately linked to the local linearizations introduced implicitly in the (hyperbolic)
convection steps by the use of an entropy condition. For convection-dominated flows,
we demonstrate that operator splitting methods typically generate a numerical widen-
ing of viscous fronts, unless the splitting step is of the same magnitude as the diffusion
scale. To compensate for the potentially damaging splitting error, we propose a cor-
rected operator splitting (COS) method for general systems of convection–diffusion
equations with the ability of correctly resolving the nonlinear balance between the
convective and diffusive forces. In particular, COS produces viscous shocks with a
correct structure also when the splitting step is large. A front tracking method for
systems of conservation laws, which in turn relies heavily on a Riemann solver,
constitutes an important part of our COS strategy. The proposed COS method is suc-
cessfully applied to a system modeling two-phase, multicomponent flow in porous
media and a triangular system modeling three-phase flow.c© 2001 Academic Press
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1. INTRODUCTION

Mathematical models for fluid flow often involve systems of convection–diffusion equa-
tions as a main ingredient. When a mathematical model is used for qualitative or quantitative
studies, approximate numerical solutions must be constructed for the nonlinear system. An
important design principle for many successful numerical methods for convection–diffusion
equations isoperator splitting(OS). That is, one splits the time evolution into partial steps
to separate the effects of convection and diffusion. In particular, OS methods are often used
to solve convection–diffusion problems that are of convection dominated nature; see [12]
(and the references therein).

The motivation for operator splitting methods lies in that it is easy to combine modern
methods developed within the hyperbolic community for tracking discontinuous solutions
with efficient methods (e.g., multigrid) for solving implicit discretizations of the parabolic
diffusive step, thus giving a powerful and efficient numerical method designed for resolving
sharp gradients. From a software development viewpoint, this can be done in a stepwise
(plug-and-play) manner, starting with a simple solver for each subproblem and then replac-
ing each solver independently of the other by a more advanced solver until a suitable level
of sophistication is reached.

The obvious disadvantage of operator splitting methods is the temporal splitting errors.
Consider a scalar, convection-dominated problemut + f (u)x = εuxx. If the equation pos-
sesses a viscous shock profile, this profile will appear on a spatial scale of orderε and
move on a time scale of order| f ′(u)|. Recent studies [2, 20–24] have shown that unless
the splitting step is of orderε, the temporal splitting error in OS methods can be significant
in regions containing viscous shocks. The resulting incorrect balance between convective
and diffusive forces appears as too wide shock layers in the numerical solution. Thus, to re-
solve viscous shock profiles correctly, one must resort to very small splitting steps, thereby
imposing a time step restriction that is not present in the underlying numerical methods for
the convective and the diffusive step. In fact, the splitting step needed to resolve the shock
layers correctly may be much less than the one needed to resolve the interaction of viscous
waves.

Small splitting steps should be avoided (if possible) for two reasons: computational
efficiency and spatial accuracy. Increasing the number of splitting steps usually means
increasing the runtime. Moreover, for numerical methods having stability restrictions, the
highestspatialaccuracy is often obtained when the time step is close to the stability limit. For
these two reasons, one should try to pick the splitting step as large as possible. To reduce the
influence of temporal splitting errors in OS methods and allow for the use of large splitting
steps, thecorrected operator splitting(COS) method was introduced by Karlsen and Risebro
[23]. The COS method was further developed and successfully applied by Karlsenet al. in
a series of papers [20–22, 13]. The forerunner for the scalar COS method was the modified
method of characteristics for nonlinear scalar parabolic problems introduced by Espedal
and Ewing [11] and Dahle [2], and further developed and analysed by Dahle, Espedal, and
their collaborators [2–6] in the context of reservoir simulation. The relation between the
modified method of characteristics and COS is discussed in the lecture notes [12].

The main idea behind the scalar COS method is to take into account the unphysical
entropy loss (due to Oleinik’s convexification) produced by the hyperbolic solver in the
convective step. The COS approach uses the wave structure from the convective step to
identify where the (nonlinear) splitting error occurs. This potential error is then compensated
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for in the diffusive step or in a separate correction step. As a result, the COS method exhibits
the property of resolving accurately internal layers with steep gradients, gives very little
numerical diffusion, and, at the same time, permits the use of large time steps. In addition, this
numerical method seems to capture all potential combinations of convection and diffusion
forces, ranging from convection dominated problems (including the purely hyperbolic case)
to more diffusion dominated problems, all within the same application!

The purpose of this paper is to derive a thorough understanding of the nonlinear mech-
anisms behind the viscous splitting error typically appearing in operator splitting methods
for systems of convection–diffusion equations. This mechanism is well understood in the
scalar case. In Sections 2.1 to 2.3 we introduce in more detail the viscous splitting applied to
one-dimensional systems, discuss the nonlinear mechanisms behind the temporal splitting
error, and introduce a general correction strategy that generalizes the scalar COS algorithm
[23]. Then in Section 2.4 we suggest particular numerical methods for solving the split
problems introduced by the COS method and describe its numerical realization in detail.
In Section 3 we demonstrate the novel COS algorithm by applying it to two 2× 2 systems
of convection–diffusion equations modeling one-dimensional flow in porous media. We
present a two-dimensional extension of the COS method based on dimensional splitting in
Section 4. Finally, we make some concluding remarks in Section 5.

2. OPERATOR SPLITTING METHODS FOR GENERAL SYSTEMS

To describe of our ideas in more detail, we consider the Cauchy problem for`× ` (` ≥ 1)
systems of convection–diffusion equations

∂tU + ∂x F(U ) = D∂2
xU, U (x, 0) = U0(x) (1)

wherex ∈ R and t > 0. HereU = (u1, . . . ,u`)T is the unknown state vector,F(U ) =
( f1(U ), . . . , f`(U ))T is a vector-valued function of classC2, andD = diag(ε1, . . . , ε`) > 0
is a constant diagonal matrix. The linear diffusion operator is chosen for simplicity; all
principles introduced below also apply to more complicated nonlinear (degenerate) dif-
fusion operators. We always assume that the initial functionU0(x) is of bounded total
variation, i.e.,U0 ∈ BV. For a class of systems of the type (1), existence (and uniqueness)
of classical solutions was established by Hoff and Smoller [17] using a finite difference
scheme.

2.1. Semi-Discrete OS

LetSt denote the solution operator taking the initial dataV0(x) to a weak solution at time
t of the purely hyperbolic problem

∂t V + ∂x F(V) = 0, V(x, t) = V0(x), (2)

i.e., we writev(x, t) = Stv0(x) for this weak solution. For strictly hyperbolic̀× ` systems
with initial data having small total variation, global existence of weak solutions was proved
by Glimm [15]. For stability and uniqueness of weak solutions, we refer to the paper by
Bressan, Liu, and Yang [1].
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Next, letHt denote the operator taking the initial dataW0(x) to a weak solution at time
t of the purely parabolic problem

∂t W = D∂2
x W, W(x, t) = W0(x), (3)

i.e., we writeW(x, t) = Ht W0(x) for this solution. For initial data of bounded total varia-
tion, the weak solution of (3) is a classical solution fort > 0, with the initial dataU0 taken
in the strongL1 sense on compact sets. This can be easily seen from the representation
formula for the solution of the linear heat equation.

In what follows, we consider a fixed final computing timeT > 0. For simplicity we also
choose a fixed splitting step1t > 0 and an integerNt , such thatNt1t = T . Then we define
the semi-discrete OS algorithm by

U1t (·, n1t) := [H1t ◦ S1t ]
nU0(·), n = 0, . . . , Nt . (4)

In the scalar case, it can be proved thatU1t converges inL1 on compact sets to the unique
classical solutionU of (1) as the splitting step1t tends to zero. The convergence proof
is based on a uniformBV (space) estimate for the splitting approximation and Helly’s
theorem; see Karlsen and Risebro [24] for details. In general, it is not possible to proveBV
estimates for systems and thus the Helly framework cannot be used to prove convergence of
operator splitting methods. However, it is possible to prove a Lax–Wendroff type theorem
for splitting methods for systems of parabolic equations:

THEOREM 2.1. If the splitting method(4) converges to a limit U(·, t) ∈ BV, then this
limit is the unique classical solution of(1).

The proof goes along the lines of [18]. The theorem shows that (4) can indeed be used
as a basis for constructing numerical solution algorithms for (1).

In applications, the exact solution operatorsSt andHt in (4) are replaced by numeri-
cal methods. We will use front tracking as defined by Risebro [27–29] as an approximate
solution operator for the hyperbolic part. For the parabolic part, we here use a simple
explicit central difference method. The methods will be introduced in more detail in the
next section. Meanwhile, let us stress that the method for the diffusion part is deliberately
chosen to be as simple as possible to focus on the main ideas of our COS strategy and
generally should be replaced by a more sophisticated method. We mention that Dawson,
Wheeler, and collaborators [7–10, 32] use operator splitting algorithms similar to (4).
In their splitting algorithm, the hyperbolic problem (2) is solved byM ≥ 1 local time
steps (for each splitting step) with an explicit Godunov type method, while the diffusion
equation (3) is solved implicitly.

2.2. Nonlinear Error Mechanisms

In the introduction we stated that OS approximations can be too diffusive near viscous
shocks when the splitting step1t is large. Karlsen and Risebro [23] point out that this
splitting error is simply a manifestation of the entropy condition that is imposed in the
hyperbolic convection step. Let us consider thescalarcase. The entropy condition intro-
duces a local linearisation off (·) once a shock is formed in the convection step and this
linearization represents the entropy loss associated with the formation of a shock in the
hyperbolic solution. Thus, the evolution of thehyperbolicsolution is governed locally by
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FIG. 1. (Left) A single shock solution from a convection step. (Right) The corresponding residual flux
function; flux function f (solid), convex envelopefc, i.e., local linearization (dash), and residual fluxfres

(dash-dot).

some convex/concave envelopefc of f between the left and right shock values. A similar
linearization can be introduced locally for theparabolicproblem; that is, the flux function
f can be decomposed into a convective partfc and a self-sharpening partf − fc that
tends to counteract the diffusive forces. Loosely speaking, we say thatfc governs the local
translation andf − fc the shape (or structure) of the viscous front. In the OS algorithm,
the local residual fluxf − fc is disregarded in the hyperbolic step and the corresponding
self-sharpening effects are therefore not taken into account in the splitting, resulting in a
splitting error. Figure 1 gives an illustration off, fc, and the residual fluxfres := f − fc in
the scalar case.

For a general system, the error mechanism is quite similar. To study it, we consider the
propagation of a single viscous shock. Assume that the splitting step is sufficiently large so
that a shock has developed in the hyperbolic substep (2), i.e., the solutionV(·, t = t̄ ) con-
sists of a single discontinuity atx = x̄ with left and right shock valuesVl = (vl

1, . . . , v
l
1)

T

and Vr = (vr
1, . . . , v

r
1)

T. Then the behavior (forward and backward in time) ofV(x, t)
locally around(x̄, t̄) is governed by the linearized hyperbolic problem

∂t V + ∂x(σ̄V) = 0, V(x, t̄) =
{

Vl , for x < x̄,

Vr , for x > x̄,
(5)

whereσ̄ is the Rankine–Hugoniot shock speed satisfying

F(Vl )− F(Vr ) = σ̄ (Vl − Vr ).

Weclaimthat a large part of the splitting error occurring locally around(x̄, t̄) in the standard
OS algorithm can be understood in terms of the difference between the nonlinear system in
(1) and the linearized system in (5) with right-hand sideD∂2

x V , or in other words, in terms
of the difference∂x(F(U )− σ̄U ). In (1), the diffusion caused by the second-order operator
is perfectly balanced by the self-sharpening effects due to the nonlinearity in the convective
operator. In the OS strategy, this self-sharpening disappears once a shock develops because
F(U ) is in effect replaced by ¯σU locally. Thus, one step in OS effectively amounts to
solving∂tU + ∂x(σ̄U ) = D∂2

xU and not (1).
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2.3. A Novel COS Strategy

To compensate for the loss of self-sharpening effects, thescalarCOS approach proposes
to include the residual fluxFres in the diffusion step of the splitting. The COS method
therefore replaces the purely parabolic split problem (3) by

∂t W = ∂x Fres(W; x) = D∂2
x W, W(x, 0) = W0(x). (6)

As an alternative, the residual flux can be included in a separate correction step,∂t V +
∂x Fres(V; x) = 0; see [23, 21] for more details. LettingPt denote the solution operator
associated with (6), the COS solution may then be defined as

U1t (·, n1t) := [P1t ◦ S1t ]
nU0(·). (7)

What we have done so far might seem a bit peculiar. We have taken the convection–
diffusion equation (1) and replaced it by a hyperbolic equation (2) and another convection–
diffusion equation (6), where the flux term in (6) is seemingly more complicated than the
one in (1). However, we see that whileF contains convectiveandself-sharpening effects,
Fres only contributes self-sharpening effects. Thus, viscous shock fronts are moved to the
correct location in the convective step and given a correct shape in the diffusive step. The
solution process has also been simplified from a numerical point of view, i.e., with a fully
discrete version of (7). Parabolic equations of the kind (1) and (6) will typically be solved
by some implicit scheme, involving iterative solution of nonlinear systems of equations.
The hyperbolic step can therefore be seen as some kind of preconditioner or a means for
providing a good initial guess for the iteration, and the iteration process will converge faster
for (6) than for (1). If the method used to solve the hyperbolic step is fast compared with
the nonlinear iteration, we gain something in terms of efficiency, see, e.g., [4, 5, 11]. In the
next section we introduce one such method, which employs a very fast, unconditionally
stable, front tracking method for the convective step.

When applied to systems of parabolic equations, the correction algorithm needs to be
reformulated, since one cannot simply write down the solution of the hyperbolic step in
terms of convex/concave envelopes. Instead, we identify the following term

∂x Fres(U ) = ∂x(F(U )− σ̄U ), (8)

for each discontinuity in the solution from the hyperbolic step. Then, the parabolic sub-
problem (3) is modified locally by addingFres(U ), giving the new split problem (6). By
integrating (8) with respect tox, we get theresidual flux

Fres(U ) = (F(U )− F(Vl ))− σ̄ (U − Vl ), (9)

where we have chosen the constant of integration such that

Fres(V
l ) = Fres(V

r ) ≡ 0.

2.4. A Fully Discrete (C)OS Method

The operator splitting methods introduced above result in two different subproblems that
each must be solved numerically. Therefore, before we describe the OS and COS approach
in more detail, we introduce numerical methods for solving the subproblems.
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2.4.1. Convection Solver

In this section we describe the front tracking method [27–29] for solving systems of
conservation laws (2)

∂t V + ∂x F(V) = 0, V(x, 0) = V0(x).

The initial function V0(x) is assumed to be of bounded variation. Front tracking is an
algorithm for computing a piecewise constant approximation toV(x, t). First, V0 is ap-
proximated by a step function so that a Riemann problem can be associated with each jump
in the approximate initial data. The solution of each Riemann problem is approximated
by a step function. This is most accurately achieved by using the Lax construction for the
exact Riemann solution, utilizing the local system of coordinates formed by the wave curves
around two constant states in state space. The Riemann solution consists of a set of constant
states connected by simple waves. In the front tracking approximation, rarefaction waves
are approximated by step functions sampled along the wave curves (according to a pre-set,
user-defined parameterδ), while the rest of the Riemann solution is left intact. This way,
each Riemann problem produces a sequence of jump discontinuities (fronts) that travel with
a finite wave speed. The Riemann solution is represented by a list of fronts sorted according
to increasing wave speed.

A global solution (inx) is formed by connecting the local Riemann solutions and consists
of constant states separated by space–time rays, i.e., a list of fronts sorted from left to right.
There will be a first time at which two or more space–time rays intersect, i.e., two or
more fronts collide. This collision defines a new Riemann problem with states given by
the rightmost and leftmost of the colliding fronts. The colliding fronts are taken out of
the solution. Then the Riemann problem is solved and the emerging fronts are inserted
into the front list. This way, the algorithm proceeds from collision to collision. Notice that
no computations are necessary between collision times. To reduce the number of wave
interactions, it is customary to perform some data reduction, i.e., remove weak waves;
see [29]. The numerical method isunconditionallystable and very fast.

2.4.2. Diffusion Solver

The parabolic step is a Cauchy problem of the form

∂t W + ∂xG(W) = ∂2
x D(W), W(x, 0) = W0(x), (10)

whereG is in applications the residual flux term (see (8)). The initial functionW0(x) is
assumed to be of bounded variation. To approximate the solutionW(x, t), we introduce
a mesh in the(x, t) plane where the spatial grid points are denoted byxj and the time
levels bytn. We denote the spacing in thex andt variables by1x andτ , respectively; i.e.,
(xj , tn) = ( j1x, nτ). The value of the difference approximation at(xj , tn) is denoted by
Wn

j . To solve this system, one can for instance use the explicit, central finite difference
method

Wn+1
j −Wn

j

τ
− G

(
Wn

j+1

)− G
(
Wn

j−1

)
21x

= ε D
(
Wn

j+1

)− 2D
(
Wn

j

)+ D
(
Wn

j−1

)
(1x)2

. (11)
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This scheme is stable provided the discretization parametersτ and1x satisfy the following
conditions

τ ≤ 0.51x2/ε, 1x max|λG| ≤ 2ε,

whereλG denotes the eigenvalues ofG′. In the case whenD(W) = W, i.e., linear diffusion,
convergence and error estimates for this scheme are shown in [17].

The stability conditions above may put severe restrictions on the discretization parame-
ters, especially on1x for small values ofε. However, both these conditions can be weakened
or removed by using a more sophisticated scheme. The second condition on1x is removed
by using an upwind discretization of the fluxG, and the first condition is weakened by us-
ing an implicit scheme. Generally, the most efficient method would therefore be an implicit
discretization combined with an efficient (non)linear solver. In this context, the important
point to keep in mind is that (10) (withG equal to the residual flux term) is much closer
to being self adjoint than the original equation, since the front tracking will give almost
“exact” information about the hyperbolic structure of the problem (see also the discussion
after (7)). This means that any iterative procedure will be much more efficient for (10)
than (1), and the numerical approximation properties will be better [2–6, 11]. However, to
keep the technical details at a minimal level, we here choose simple explicit schemes. In
Section 3 we use the scheme in (11), while in Section 4 we replace the discretization of the
G-term by a suitable upwind difference to avoid the restriction on the grid size.

2.4.3. The Splitting Method

Given numerical methods for the two substeps, we can now describe the (C)OS method for
the convection–diffusion problem (1). The construction of the residual fluxFres is described
in detail later on.

Letting 1x > 0 denotes the grid spacing, we introduce the grid{xj = j1x} j∈Z. Our
approximate solutions will be piecewise constant functions with respect to the grid cells
{I j = [xj , xj+1)} j∈Z. Therefore, we need the scalar projection operatorπ defined by

πz(x) = 1

1x

∫
I j

z(ξ) dx, for all x ∈ I j , (12)

for any scalar functionz(x) ∈ BV, and the operator5 defined by5Z = (πz1, . . . , πz`)T,
for any vector-valued functionZ = (z1, . . . , z`)T ∈ BV. We next consider a fixed final
computing timeT > 0, and choose a splitting step1t > 0 and an integerNt such that
Nt1t = T . Using1 as a short-hand notation for the discretization parameters(1x, 1t, δ),
we define our piecewise constant COS approximationU1 : R× [0, T ] → R by

U1(x, t) := Un(x), (x, t) ∈ R× ((n− 1)1t, n1t ], n = 1, . . . , Nt , (13)

whereU1(x, 0) := U0(x) and U0 := 5U0. For notational convenience, we have sup-
pressed the dependency on1 in Un+1. We next explain how to inductively construct the
piecewise constant functionUn+1(x) from the knowledge of the piecewise constant function
Un(x). The construction consists of two main steps:
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Step 1 (Convection).Let St V0 be the front tracking solution of the hyperbolic problem

∂t V + ∂x F(V) = 0, V(x, 0) = V0(x).

where we have suppressed the dependency on the discretization parameters1x andδ in St .
We then define the intermediate solution

Un+1/2 = S1tU
n.

Step 2 (Diffusion). Introduce a local time stepτ satisfyingτ ≤ 0.51x2/ε. Furthermore,
we let Nτ be an integer such thatNτ τ = 1t . LetPt W0 be the finite difference solution of

∂t W + ∂x Fres(x, W) = D∂2
x W, W(x, 0) = 5W0(x),

where we have suppressed the dependency on the discretization parameters1x andτ inPt .
The residual fluxFres(x, ·) depends on the hyperbolic solutionUn+1/2 and its construction
is explained in detail below. Finally, the COS solutionUn+1 is defined as

Un+1 = P1t ◦5Un+1/2,

or alternatively as

Un+1 = [P1t ◦5 ◦ S1t ]U
n.

Note that if the residual fluxFres is set to zero, the above algorithm reduces to a standard
OS algorithm. In Section 3, we demonstrate numerically that the functionU1 is a good
approximation to the exact solutionU of the convection–diffusion problem (1). In particular,
when1t is large, the COS method gives significantly more accurate treatment of viscous
shocks than the corresponding OS method.

Remark. One should not confuse the splitting step1t , which is also the time step used
by the hyperbolic solver (i.e., the front tracking method), with the time stepτ used by
the parabolic solver. Since the parabolic step is here solved (for simplicity) by an explicit
method, we have a stability constraint onτ . However, there is no CFL-constraint on the
splitting step1t ! Since the front tracking method is unconditionally stable, we can therefore
take1t = Mτ with M À 1, and this is indeed what we do in practice.

Remark. Although the exact solution of (1) is a smooth function, our approximation
U1(·, t) is merely piecewise constant. Increased accuracy in space can be obtained by
replacingU1(·, t) with a piecewise linear interpolant.

2.4.4. Construction of the Residual Flux

Given a piecewise constant, front tracking solutionUn+1/2, we can now construct the
residual fluxFres(x, ·) appearing in (6). We assume that the discontinuities ofUn+1/2(x) are
located at the points{xi }. LetUi = (ui

1, . . . ,u
i
`)

T andUi+1 = (ui+1
1 , . . . ,ui+1

` )T denote the
values ofUn+1/2(x) in the intervals [xi−1, xi ) and, [xi , xi+1), respectively. Locally around
the i th discontinuity emerging from(xi , t0) the nonlinear problem (2) is governed by the
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linearized problem

∂t V + ∂x(σi V) = 0, V(xi , t0) =
{

Ui , for x < xi ,

Ui+1, for x > xi ,

whereσi is the Rankine–Hugoniot shock speed satisfyingF(Ui )− F(Ui+1) = σi (Ui −
Ui+1). Motivated by the discussion in Section 2.2, we define the residual fluxFi

resassociated
with the i th discontinuity as

Fi
res(U ) =

{
(F(U )− F(Ui ))− σi (U −Ui ), U ∈ (ui

1, ui+1
1

)× · · · × (ui
`, ui+1

`

)
,

0, otherwise.

Note thatFi
res(Ui ) = Fi

res(Ui+1) ≡ 0.
We note that this is the same residual flux as Karlsen and Risebro [23] presented, since the

shock speedσi has to fulfill the Rankine–Hugoniot relation. We also note that the constant
of integration is of no importance since only derivatives ofFres are present in the COS
equations.

Although a residual flux term can be identified for every discontinuity in the front tracking
solution, they should not be included for discontinuities approximating rarefaction waves
or for weak shocks. In practice we therefore only include residual terms for shock waves
with strength exceeding a user-defined thresholdγ . The process of identifying relevant
residuals can be simplified by tagging fronts in the front tracker according to wave type
(shock/rarefaction/contact).

Having defined the residual fluxes in state space(u1 , . . . , u`), we need to specify where
to apply them in physical space (i.e., intervals inx). This can be done in several ways. For
explicitdiscretizations we apply the following strategy: We observe that in each spatial in-
terval where the solution is monotone in all its components (henceforth calledmonotonicity
interval), all residual fluxes are defined on disjoint sets in state space. Therefore, we set the
residual flux to zero outside (a subset of) the associated monotonicity interval, i.e.,

Fres(x, U ) =
∑

i

F i
res(U )χDi (x),

whereχI (x) denotes the indicator function of the intervalI ⊂ R and Di is the (subset
of) the monotonicity interval. Using the monotonicity of the solution, we can determine a
unique residual flux also in regions of changing monotonicity. Although the monotonicity
intervals may change throughout the diffusion step (as the discontinuity is smoothed out),
they are always well defined and easy to compute.

This approach works well for explicit schemes, but it does not apply to implicit dis-
cretizations when the discontinuity coincides with a change in monotonicity, i.e., when the
left or right state of the discontinuity is a local extremum in one of its components. The
reader is referred to Figure 15 for an example where such a situation occurs. For implicit
discretizations we therefore use a much simpler approach where the user prescribes the
length of the intervals where the correction is applied. To avoid overlap of residual flux
domains, it might be necessary to clip the spatial correction intervals at each endpoint. To
this end, one can use monotonicity information and for instance specify that the intervals
should not exceed the midpoint between the discontinuities of two consecutive residual
fluxes (i.e., not exceed(xi + xi+1)/2).
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FIG. 2. (Left) Shock plane and one component of the flux for a system of conservation laws. (Right) The
corresponding residual flux component.

Unfortunately, specifying a reasonable length for the correction intervals must be based
on experience. For explicit discretizations, we have observed that the corresponding “in-
ternal boundaries” introduced in the diffusion step may lead to unphysical effects in
certain cases if, for instance, the length of the interval is underestimated by the user;
one example is reflections breaking up the monotonicity of the viscous front. For ex-
plicit schemes we therefore advocate the approach based upon monotonicity intervals
and for implicit schemes the approach based upon specified interval lengths. However,
to show that both approaches work for explicit schemes, we construct residual fluxes
based upon monotonicity intervals in Section 3.1 and based upon specified length in
Section 3.2.

Remark. For scalar conservation laws,fres(·, u) may be discontinuous for each fixed
u, while fres(x, ·) is always continuous for each fixedx; see Fig. 1. This is, however, not
the case for systems of conservation laws. Each componentf i

res(x, U ) of Fres(x, U ) may
be discontinuous for each fixedU and, more important, is always discontinuous for each
fixed x, expect for the trivial case with no shock; see Fig. 2.

3. APPLICATIONS

In this section we present numerical realizations of the novel COS strategy for two
particular 2× 2 systems describing flow in porous media. Simulations for a two-phase,
multicomponent model are reported in Section 3.1 and similar experiments for a triangular,
three-phase model in Section 3.2.

3.1. The Polymer System

We consider the initial value problem for the following 2× 2 system of parabolic
equations:

∂t s+ ∂x f (s, c) = ε∂2
xs

(14)
∂t [sc+ a(c)] + ∂x(c f (s, c)) = ε∂2

x [sc+ a(c)],
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where(s, c) is the unknown state vector,f = f (s, c), a = a(c) are given functions

f (s, c) = s2

s2+ µ(1+ νc)(1− s)2
, a(c) = 0.2c

1+ c
, (15)

andε > 0 is a small scaling parameter. For all numerical examples in this section,µ = 0.5
andν = 2.

The system (14) models a polymer process in enhanced oil recovery; see [30] and ref-
erences therein for details. Existence, uniqueness, and stability properties for a smooth
solution of the Cauchy problem for (14) have been established by Tveito [30]. The Riemann
problem for the corresponding inviscid, nonstrictly hyperbolic system is solved in [19] and
a front tracking method is presented in [28]. One special feature of the inviscid system is
that the eigenvaluesλs = fs andλc = f/(s+ ac) coincide along a curveT in state space.

Introducing the quantityb = sc+ a(c), the mathematical model (14) takes the form

∂t s+ ∂x f (s, c) = ε∂2
xs

(16)
∂t b+ ∂x(c f (s, c)) = ε∂2

xb.

3.1.1. The Riemann Problem

The solution of the Riemann problem for (16) (withε = 0) is a composition of four
simple waves;s- andc-rarefactions ands- andc-shocks. For Riemann problems with no
jump in the concentrationc, the solution reduces to that of the Buckley–Leverett equation,
which is well known. Solutions of this kind will simply be termeds-waves, although they
may be compositions of shocks and rarefactions.

For Riemann problems with a jump inc, the system behavior is more complicated since
the eigenvalues of (16) coincide along a curveT in phase space. In general, ifcL > cR the
solution will consist of onec-shock and possibly somes-waves. IfcL< cR, the solution will
be made up ofs-waves andc-rarefactions.

For data completely on one side ofT , the solution is a composition of ones-wave and
onec-wave. However, when the left and right statesuL anduR are on different sides ofT ,
the solution can consist of up to five (or six) constant states, separated by simple waves.
This case is shown in Example 2 of this section.

Due to the nonstrict hyperbolicity, there is one special case, called an overcompressive
shock, where both thes- andc-characteristics go into the shock. The corresponding solution
can be interpreted as the exact superposition of ans- and ac-shock, see Example 3 of this
section.

EXAMPLE 1. In our first example, we consider discontinuous initial data

(s0, c0)(x) =
{
(1.0, 0.5), x ≤ 0.1,

(0.1, 0.1), x > 0.1.

In the inviscid case, the initial data correspond to a Riemann problem, which is solved by
ans-shock, followed by ac-shock and ans-rarefaction wave.

Figure 3 shows the approximate solution at timet = 1.0 for ε = 0.005 computed using
OS and COS with one time step on a 256 grid. Since the time step is much larger than
the diffusion scale, OS gives a considerable smearing of thes-shock, whereas thec-shock
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FIG. 3. Example 1. Solution at timet = 1.0 computed using one OS step (left) and one COS step (right).
The solution is plotted in primitive variables(s, c) at every second grid point. A reference solution computed
by the central difference scheme (11) is included; the solid line gives thes-component and the dashed line the
c-component.

contains little self-sharpening and is therefore represented quite accurately. When correction
effects are included, both shock fronts are resolved almost perfectly. In this example, residual
fluxes are defined for both thes-shock and thec-shock (see Fig. 4), although the latter gives
little effect. No fluxes are defined for the discontinuities in the rarefaction wave.

Figure 4 reports pointwiseL∞ errors for OS and COS. As expected, the major error
contribution is around thes-shock. However, both OS and COS overshoot thes-component
in the interval fromx = 0.1 to x = 0.5. Because of mass conservation, thes-shock is
therefore placed a bit to the left compared with the reference solution; hence the high peak
in the pointwise error for COS.

To study the convergence of the splitting methods, we fix the spatial discretization to 210

blocks on the interval (−0.25, 2.25) and increase the number of splitting steps by powers of
two. Errors for this convergence study are reported in Table I forε = 0.01 andε = 0.001.
Here the error is defined as

E =
∑̀
i=1

∥∥ui − ur
i

∥∥
1∥∥ur

i

∥∥
1

, (17)

FIG. 4. Example 1. (Left) The solution after the hyperbolic substep compared with the reference solution.
(Right) Pointwise error in L∞ norm relative to the reference solution.
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TABLE I

Example 1. Estimated Errors (17) and Convergence Rates for OS and COS

with Fixed Spatial Discretization

ε = 0.01 ε = 0.001

Nt OS Rate COS Rate OS Rate COS Rate

1 4.42e-02 — 1.96e-02 — 1.88e-02 — 3.47e-03 —
2 2.90e-02 0.61 1.61e-02 0.29 1.26e-02 0.57 5.18e-03−0.58
4 1.97e-02 0.56 1.22e-02 0.40 8.16e-03 0.63 4.30e-03 0.27
8 1.27e-02 0.63 8.53e-03 0.51 5.69e-03 0.52 3.27e-03 0.40

16 7.57e-03 0.75 5.65e-03 0.59 4.18e-03 0.44 2.52e-03 0.38
32 4.16e-03 0.86 3.58e-03 0.66 3.27e-03 0.35 2.22e-03 0.18
64 2.30e-03 0.86 2.45e-03 0.55 2.78e-03 0.23 2.17e-03 0.03

128 1.48e-03 0.63 1.53e-03 0.68 2.85e-03−0.03 2.58e-03 −0.25
256 1.30e-03 0.19 1.31e-03 0.23 3.61e-03−0.34 3.52e-03 −0.45

Note. Nt denotes the number of splitting steps.

where (u1, . . . ,u`) denotes the splitting solution and (ur
1, . . . ,u

r
`) the reference

solution.
For ε = 0.001, the error for OS decreases up toNt = 64, but then starts to increase as

a result of increasing numerical diffusion introduced by the projection in the hyperbolic
steps. For COS, the error increases when going from one to two splitting steps, because
with two splitting steps thec-shock is not fully formed in the second hyperbolic step, and
hence the residual flux is weaker. With four (or more) splitting steps, a residual flux for the
c-shock is only formed in the first step.

Forε = 0.01, the OS error decreases for allNt (but it increases forNt = 512). By intro-
ducing corrections, we remove most of the splitting error around thes-shock, but not in the
interval fromx = 0 to x = 1.5; see Fig. 5. Therefore, the COS error also decreases with
the increasing number of splitting steps. Since thec-shock is completely smoothed out by
the diffusive forces, the corresponding residual flux is formed only in the first hyperbolic
step.

FIG. 5. Example 1. (Left) Thes-component of the reference solution forε = 0.01 (solid) and 0.001 (dashed).
(Right) Cumulative L1 error of thes-component for OS and COS with one and two splitting steps forε = 0.01.
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FIG. 6. Example 2. (Left) The solution in(s, c)-space; solid line represents the solution forε = 0.0025
at time t = 1.0 and the dashed line the inviscid solution. (Right) Thes-component as a function of spatial
coordinatex.

EXAMPLE 2. The next example demonstrates that the corrected splitting method also
applies to nonmonotone data. To this end, consider the Riemann initial data

(s0, c0)(x) =
{
(0.45, 0.0), x ≤ 0.1,

(0.2, 1.0), x > 0.1.

In the inviscid case, this problem gives the maximum number of intermediate states in
the Riemann solution, i.e., a solution of the formuL c→ u1 s→ u2 c→ u3 s→ uR, where

s→
denotes ans-wave and

c→ a c-wave; see, e.g., [19, Ex. 8.2]. The solutions in the inviscid
case and forε = 0.0025 are shown in Fig. 6.

Figure 7 shows approximate solutions computed by OS and COS on a 210 grid; es-
timated L1 errors in each grid cell are shown in Fig. 8. With one splitting step, COS
resolves the leadings-wave accurately. However, since a residual flux is also identified
for thes-shock atx ≈ 1.26, COS produces an extra peak in the solution (resembling the
inviscid solution). With two splitting steps, the OS and COS solutions coincide along
the trailing edge. With four splitting steps, COS gives a fairly accurate approximation of
the exact solution. Notice that four splitting steps corresponds to a CFL number around
300!

EXAMPLE 3. In the last polymer example, we consider a Riemann problem correspond-
ing to an (over) compressive shockuL c→ uR in the inviscid case; compressive shock
means that both thes- and thec-characteristics go into the shock and contribute to the
self-sharpening.

The Riemann problem is given by

(s0, c0)(x) =
{
(0.75, 0.8), x ≤ 0.25,

(0.839619. . . ,0.4), x > 0.25.

If this Riemann problem is perturbed slightly, the solution changes from a single shock
to a composition of waves moving with almost the same speed (as shown in Fig. 9). There
are two possible results of a perturbation; either a monotone solutionuL s→ u1 c→ uR or a
nonmonotone solutionuL c→ u2 s→ uR (as shown Fig. 9).
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FIG. 7. Example 2. Comparison of OS (small dots) and COS (large dots) with one, two, and four splitting
steps. The plots show thes-component versusx at timet = 0.5 with markers at every eight grid point.

In the viscid case, the Riemann problem will be perturbed instantly. The result is a truly
nonlinear phenomenon, where monotone data gives nonmonotone solutions. Therefore, the
solution of the inviscid case is a poor approximation to the true solution, and both the OS
and COS strategy will fail to resolve the nonmonotonicity in the first time step. Figure 10
shows the exact solution at timet = 1.0 along with the OS and COS approximations for one
time step. The exact (reference) solution has a dip due to the presence of the diffusion term,
which instantly perturbs the initial Riemann problem. The OS approximation is monotone
and does not resolve the nonlinear dynamics between the convective and diffusive forces,

FIG. 8. Example 2. L1 error versus the cell center in each grid cell for OS (left) and COS (right).
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FIG. 9. Example 3. Wave patterns in thes-component as a function ofx for two slightly perturbed right states
(sR

1 = sR
0 + 0.001 andsR

2 = sR
0 − 0.001) for overcompressive shock case.

thereby giving the usual smearing of the steep gradient. COS, on the other hand, does not
produce the same excessive smearing and gives a very small dip introduced by the nonlinear
residual. In both cases, the solution misses on the position of the shock because of mass
conservation.

With two time steps, as in Fig. 11, the difference is more distinct. Neither OS nor COS
are able to resolve the dip in the solution properly. This is due to splitting errors from the
coarse time discretization. However, when comparing OS and COS, we see that COS is
much closer to the reference solution in the steep part (s-shock).

In Table II we report the estimated errors for a number of runs with decreasing splitting
steps, along with convergence rates. COS and OS have more or less the same rates of
convergence. We note, however, that COS in general has lower error than OS. This is
caused by the sharpening effect of the residual flux.

When the number of splitting steps becomes large, the solutions deteriorate due to the
many projections that are performed; see the discussion in Example 2.

Remark. In the above examples we have not elaborated on how to choose the threshold
parameterγ used to identify residual fluxes. When choosing this parameter there are two

FIG. 10. Example 3. Comparison of thes-component as a function ofx for splitting solutions at timet = 1.0
with ε = 0.005. The approximate solution is computed with one step of COS (left) and one step of OS (right).
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FIG. 11. Example 3. Comparison of thes-component as a function ofx for splitting solutions computed with
two steps of COS (left) and OS (right).

points to consider: First,γ should be sufficiently small, so that relevant residual fluxes are
identified. Second,γ should be chosen so large that no residual fluxes are identified for
small-scale oscillations appearing in the hyperbolic solutions (e.g., post-shock oscillations,
or oscillations for data near the transition curve [31]). Using these rules of thumb, a suitable
parameter can easily be identified in each case, without any special tuning necessary. In
all the above runs, we used a parameter value ofγ = 0.1 (as the size of the oscillations
typically were below 0.05).

3.2. A Triangular Three-Phase Flow Model

We consider the initial value problem for the 2× 2 system of parabolic equations

∂t u+ ∂x f (u) = ε∂2
xd(u),

(18)
∂tv + ∂xg(u, v) = ε∂2

xd(v),

whereu andv are phase saturations (gas and water, respectively),f andg the fractional flow
functions,d the diffusion function, andε is a small scaling factor. The Jacobian matrix of the

TABLE II

Example 3. Estimated Errors (17) and Convergence Rates for OS and COS

with Fixed Spatial Discretization ∆x = 2−9

ε = 0.005 ε = 0.01

Nt OS Rate COS Rate OS Rate COS Rate

1 6.93e-03 — 4.31e-03 — 8.11e-03 — 5.05e-03 —
2 3.94e-03 0.57 2.95e-03 0.38 4.40e-03 0.61 3.60e-03 0.34
4 2.15e-03 0.61 2.67e-03 0.10 2.26e-03 0.67 2.15e-03 0.51
8 1.13e-03 0.64 9.94e-04 0.99 1.16e-03 0.67 1.02e-03 0.74

16 6.23e-04 0.60 5.84e-04 0.53 6.22e-04 0.62 5.86e-04 0.56
32 3.89e-04 0.47 3.77e-04 0.44 3.82e-04 0.49 3.71e-04 0.46
64 3.04e-04 0.25 2.97e-04 0.24 2.80e-04 0.31 2.76e-04 0.30

128 2.85e-04 0.07 2.82e-04 0.05 2.48e-04 0.12 2.46e-04 0.11
256 2.89e-04 −0.02 2.88e-04 −0.02 2.47e-04 0.00 2.46e-04 0.00

Note. Nt denotes the number of splitting steps.
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FIG. 12. Example 3. Splitting solutions in state space after one step (left) and two steps (right). The thin solid
lines represents the waves of the slight perturbations (sR

1 andsR
2 ).

fractional flow functions is (lower) triangular, hence a triangular system. The system (18)
models flow of oil, gas, and water in a porous medium. Generally, no systems arising from
three-phase flow models are triangular, but by assuming that one of the phases, typically
the gas phase, is decoupled from the other two we get the system above. In many cases, this
is a reasonable assumption. Here we use flux functions [25]

f (u) = u2

u2+ (1− u)2/10
,

g(u, v) = (1− u)2+ u2/10

10u2+ (1− u)2
· v2

v2+ (1− v)2/10
,

and the diffusion function is given as

d(x) = 4x(1− x)+ 0.01,

which thus has the usual bell shape typically seen in reservoir models. For simplicity, a
small constant has been added to avoid degeneration of the system. Alternatively, we could
have treated the degeneracy by using upwind discretizations of the convective terms.

We present two numerical examples, one simple Riemann problem, and a Cauchy problem
with nonmonotone solution. In both cases, we compare COS and OS solutions against a
reference solution computed with a central difference scheme on a very fine discretization.

3.2.1. The Riemann Solver

The essential part of the hyperbolic solution operator in our operator splitting method
is the Riemann solver whose construction depends heavily on the triangular nature of the
system. The procedure for constructing the solution of the Riemann problem is found in
Gimse [14]. Let us very briefly recall the basic steps in this procedure.

We solve the Riemann problem for (18) with linearized flux functions (the linearization
parameter is denoted byδ > 0). The scalar decoupled equation foru (the first equation in
(18)) is easily solved, and the solutionu consists of a finite number (sayM) of constant
states. Rarefaction waves are approximated by step functions. Then we solve the (coupled)
equation forv (the second equation in (18)). In each region in the(x, t) plane whereu is
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constant, the coupled equation reduces to a scalar equation. In order to solve the coupled
equation, we must therefore solveM scalar equations and connect together the solutions
from the neighboring regions. To find legal connection values, i.e., legalv-values on each
side of the interface between two regions, we must construct so-called H-sets. We mention
that the construction of the H-sets is the most time-consuming part of the Riemann solver.
For further details on the Riemann solver, we refer to [14].

There are three wave types in the solution of the triangular Riemann problem. From
the scalar Riemann problem, we have rarefaction waves and shock waves. In addition,
there are connection waves, i.e., waves connecting thev-regions in the(x, t) plane. The
connection waves will always have the same speed as the corresponding discontinuities
in u.

In the numerical examples below, the flux functions are linearized withδ = 0.01. This
sets a limit on the resolution of the front tracker and hence the expected accuracy of the
solution.

Example 1. As for the polymer system, we consider first a simple Riemann problem:

(u0, v0) (x) =
{
(0.4, 0.6), x ≤ 1.0,

(0.0, 0.0), x > 1.0.
(19)

The diffusion coefficientε is set equal to 0.1, and we seek solutions at timet = 0.5. The
finite difference operator uses a grid with1x = 0.01.

Figure 13 shows solutions computed using one step of OS and COS compared with a
reference solution. The COS method sharpens the shock front inu nicely. In addition,
the COS method incorrectly sharpens the quite smooth front inv. As a result of this
sharpening, the error inv close to the shock is larger for COS than for OS. The left
plot in Fig. 14 shows local L1 error in each grid cell as a function of the position of
the cell center. The remedy for this erroneous sharpening is to decrease the time step.
Figure 14 (right plot) shows cumulative L1 errors for COS and OS with one and two
steps. We observe that already when two time steps are used instead of one, the erroneous
sharpening inv (at x ≈ 1.5) is almost gone, and COS outperforms OS. This is because
the front inv is smoother in the second time step and therefore no residual flux is de-
fined.

FIG. 13. Example 1. Solution of Riemann problem (19) at timet = 0.5 for ε = 0.1 computed using one step
of OS (left) and one step of COS (right).
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FIG. 14. Example 1. Error measurements for Riemann problem (19) at timet = 0.5 for ε = 0.1. (Left) L1

error in each grid cell for COS and OS with one time step. (Right) Cumulative L1 error for COS and OS with one
and two steps.

Example 2. In the second example, we solve the Cauchy problem for (18) with initial
data

u0(x) = v0(x) =


0.0, x < 0.4,
x − 0.4, 0.4< x < 0.8,
0.4, x > 0.8.

(20)

Final computing time ist = 1.0 and we setε = 0.1. The finite difference operator uses a
grid with1x = 0.01.

The performance of COS in this example is very good. In Figure 15, OS and COS solutions
computed with one time step are compared with the reference solution. The OS solution
is nowhere near catching the shock fronts inu andv. On the other hand, the correction
achieved by adding the residual fluxes enables the COS method to resolve the shock fronts
almost perfectly.

When going from one to two time steps in COS, we observe a nice decrease in the error;
see Fig. 16 (left plot). However, when increasing the number of splitting steps to four, the

FIG. 15. Example 3. Solutions of Cauchy problem (20) at timet = 1.0 for ε = 0.1 computed using one step
of OS (left) and one step of COS (right).
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FIG. 16. Example 3. Error measurements for COS for Cauchy problem (20) at timet = 1.0 with ε = 0.1;
(left) L1 error in each grid cell, (right) cumulative L1 error.

error increases almost to the level observed for one step; see Fig. 16 (right plot). The reason
is the way the residual fluxes are defined. If the distance between two shocks is less than
the (prescribed) length of the correction intervals, the residual fluxes are only defined to the
midpoint between the two shocks. When the time step decreases, the distance between the
two v-shocks also decreases. As a result, the correction interval for each residual flux also
decreases, and the sharpening effect is reduced. Thus the improvement of the OS solution
is smaller, but COS still gives a lower error than OS with the same number of time steps.

To study the convergence of OS and COS, we fix the spatial discretization1x to 0.01 on
the interval (0, 4) and increase the number of splitting steps by powers of two. Table III gives
errors and convergence rates for this convergence study forε = 0.1. The error is defined as

E =
∑̀
i=1

∥∥ui − ur
i

∥∥
1, (21)

where (u1, . . . ,u`) denotes the splitting solution and (ur
1, . . . ,u

r
`) the reference solution.

TABLE III

Example 3. Estimated Errors (21) and Convergence Rates for OS and COS

with Fixed Spatial Discretization ∆x = 0.01

ε = 0.1

Nt OS Rate COS Rate

1 2.76e-01 — 4.36e-02 —
2 1.75e-01 0.65 2.92e-02 0.58
4 9.76e-02 0.84 4.23e-02 −0.53
8 5.51e-02 0.82 5.59e-02 −0.40

16 3.19e-02 0.79 2.97e-02 0.91
32 2.15e-02 0.56 2.11e-02 0.49
64 1.80e-02 0.26 1.80e-02 0.24

128 1.99e-02 −0.14 1.99e-02 −0.15
256 2.30e-02 −0.20 2.31e-02 −0.21

Note. Nt denotes the number of splitting steps.
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We see that the error for OS decreases up toNt = 64, but then starts to increase as a result
of numerical diffusion. The error for COS first decreases and then increases forNt = 4, 8
as a result of decreasing distance between the twov-shocks (as explained above). ForNt

larger than 8, COS performs as OS.

Remark. The COS method gives very good results. Using an implicit diffusion solver
would make the runtimes go down and thus make the COS method very efficient. We have
not done this here, since we were merely interested in testing whether COS reduces the
temporal splitting error compared to OS. In the COS method we have chosen to prescribe
the length of the correction intervals asK ε with K = 10. Moreover, as for the polymer
system in Section 3.1, we choseγ = 0.1 as the value for the threshold parameter used to
pick out the shocks that define the residual fluxes.

4. A TWO-DIMENSIONAL EXTENSION

In this section we present a two-dimensional extension of the COS idea for the polymer
system using dimensional splitting. The same idea can be applied to other systems and
higher dimensions. To add more realism to the equation, we also include a driving velocity
field. That is, we consider

∂t s+ V(x) · ∇ f (s, c) = ε1s
(22)

∂t b+ V(x) · ∇(c f (s, c)) = ε1b,

where f is given by (15) withµ = 0.25 andν = 9, x = (x1, x2), V = (V1, V2), ∇ =
(∂x1, ∂x1), and1 = ∂2

x1
+ ∂2

x2
. The velocity field is given by a pressure equation combined

with Darcy’s law,

−∇(λ(s, c)1p) = 0, V = −λ(s, c)1(p), (23)

whereλ denotes a total mobility.
A common strategy to solve the overall system (22) and (23) is to decouple the equations

by operator splitting: First solve the pressure equation (23) with coefficients given by the
initial fluid distribution. Then the velocity field is computed using Darcy’s law, and this
velocity is held fixed while the saturations and polymer concentrationc are advanced
forward according to (22). Then the process is repeated. In the following we will assume
that the velocity field is a given quantity and concentrate on the solution of (22).

Let1x > 0 and1t > 0 denote the spatial and temporal discretization parameters asso-
ciated with our discrete splitting method. LetSxj

t denote the front tracking solution operator
associated with the following one-dimensional system of conservation laws

∂t s+ Vj (x)∂xj f j (s, c) = 0
(24)

∂t b+ Vj (x)∂xj (c f j (s, c)) = 0.

The front tracking algorithm can easily be modified to incorporate varying velocity fields;
see, e.g., Lie [26] or Haugseet al. [16]. Moreover, residual fluxes are identified as outlined
above forV ≡ 1. Now, letPxj

t denote the finite difference solution operator of the following
parabolic system
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FIG. 17. Example 1. Saturation component of the solution at timet = 0.4 computed by OS (left) and COS
(right) with 4 steps (upper row) and with 16 steps (lower row).

FIG. 18. Example 1. Saturation (left) and polymer concentration (right) computed on a 257× 257 grid with
CFL number 2.0.
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FIG. 19. Example 2. Saturation and concentration profiles at timet = 0.3 computed on a 129× 129 grid.
The diffusion coefficient isε = 0.05, 0.005, and 0.0005 from top to bottom.

∂t s+ Vj (x)∂xj f res, j
1 (x, s, c) = ε∂2

xj
s

∂t b+ Vj (x)∂xj f res, j
2 (x, s, c) = ε∂2

xj
b.

(25)

Note thatxi , i 6= j , act only as parameters in (25). We then introduce the following
operator splitting solution
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(s, b)(x, n1t) ≈ (sn, bn) ≡ [Px2
1t ◦ 5 ◦ Sx2

1t ◦ Px1
1t ◦ 5 ◦ Sx1

1t

]n
5(s0, b0). (26)

EXAMPLE 1. In the first example, we consider a standard test case from reservoir sim-
ulation, the quarter five-spot case, which consists of a unit square with an injection well in
the lower left corner and a production well in upper right. A no-flow condition is specified
along the boundaries. We consider a reservoir initially filled with pure oil into which pure
water with a polymer concentration 0.1 is injected. The diffusion coefficientε is set to
0.005. To solve the parabolic systems (25), we use a componentwise upwind method.

Figure 17 shows the saturation component of the solution at timet = 0.4 (corresponding
to 0.4 pore volumes of fluid injected) computed by COS and OS. A reference solution
computed on a 257× 257 grid is given in Fig. 18. Due to very large velocities near the
wells, we use small splitting steps (CFL number 2.0) up to timet = 0.02 to stabilize the
profile and then four splitting steps to reach final timet = 0.4. The splitting steps have
been intentionally chosen large to demonstrate the error mechanisms in the shock layers,
hence the lack of symmetry due to dimensional splitting errors. Much of the dimensional
splitting error is removed by increasing the number of splitting steps to 16, for example.
Furthermore, we see that OS and COS with 16 steps coincide except near the diagonal,
where the velocity field is sufficiently strong to form discontinuities in the hyperbolic steps
and hence residual fluxes.

EXAMPLE 2. In the second example, we add a heterogeneous permeability field to the
quarter five-spot. The permeability field is realized as a log-Gaussian random field. Due
to the heterogeneity, the water front will contain viscous fingers. To resolve the fingering
properly, one has to reduce the splitting steps compared with the example above. Figure 19
shows saturation and polymer concentration profiles at timet = 0.3 for three different
values ofε. The length of the splitting steps varies according to a CFL target 4.0 for the
hyperbolic steps. Although residual fluxes are seldom identified in these simulations (for
ε = 0.05 and 0.005), the mechanism is embedded and is automatically invoked whenever
necessary to prevent viscous splitting errors.

5. CONCLUDING REMARKS

We have demonstrated numerically that operator splitting (OS) methods for systems of
convection–diffusion equations in one space dimension have a tendency to be too diffusive
near viscous shock waves. In the scalar case [23, 20], this is related to the fact that the entropy
condition (Oleinik’s convexification criterion) forces the hyperbolic solver in the convection
step to throw away information about the structure of the viscous shock waves, at least when
the splitting step is large, thereby creating an entropy loss. To reduce this temporal splitting
error, Karlsen and Risebro [23] (see also [12, 20]) introduced the corrected operator splitting
(COS) method for scalar convection–diffusion equations. The idea behind the scalar COS
method is to use the wave structure from the convection step to identify where the nonlinear
splitting error (or entropy loss) occurs. The potential error is then compensated for in the
diffusion step (or in a separate correction step).

In the present paper, we have outlined the mechanisms behind the splitting error for
systems of convection–diffusion equations. Similar to the scalar case, the splitting error is
intimately related to the local linearizations introduced implicitly in the convection steps
due to the use of an entropy condition. Moreover, we have proposed a working COS method
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for systems. A front tracking method [27–29] for systems of conservation laws, which in
turn relies on a Riemann solver, is an important part of this COS method. The proposed COS
method has been applied to a 2× 2 system modeling two-phase, multicomponent flow and
a triangular 2× 2 system modeling three-phase flow. The numerical examples demonstrate
that the COS method is significantly more accurate than the corresponding OS method
when the splitting step is large and the solution consists of (moving) viscous shock waves.
We have extended the COS method to two-dimensional systems of convection–diffusion
equations by means of dimensional splitting and applied it to a polymer system with a
driving velocity field. In closing, we mention that the COS approach can be implemented
for other systems. Moreover, we believe that one can replace the front tracking method in
the COS approach by the Godunov method, for example.
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