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Many numerical methods for systems of convection—diffusion equations are based
on an operator splitting formulation, where convective and diffusive forces are ac-
counted for in separate substeps. We describe the nonlinear mechanism of the splitting
error in such numerical methods in the one-dimensional case, a mechanism that is
intimately linked to the local linearizations introduced implicitly in the (hyperbolic)
convection steps by the use of an entropy condition. For convection-dominated flows,
we demonstrate that operator splitting methods typically generate a numerical widen-
ing of viscous fronts, unless the splitting step is of the same magnitude as the diffusion
scale. To compensate for the potentially damaging splitting error, we propose a cor-
rected operator splitting (COS) method for general systems of convection—diffusion
equations with the ability of correctly resolving the nonlinear balance between the
convective and diffusive forces. In particular, COS produces viscous shocks with a
correct structure also when the splitting step is large. A front tracking method for
systems of conservation laws, which in turn relies heavily on a Riemann solver,
constitutes an important part of our COS strategy. The proposed COS method is suc-
cessfully applied to a system modeling two-phase, multicomponent flow in porous
media and a triangular system modeling three-phase flagoo1 Academic Press
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1. INTRODUCTION

Mathematical models for fluid flow often involve systems of convection—diffusion equ.
tions as a main ingredient. When a mathematical model is used for qualitative or quantite
studies, approximate numerical solutions must be constructed for the nonlinear system
important design principle for many successful numerical methods for convection—diffus
equations imperator splitting(OS). That is, one splits the time evolution into partial step:
to separate the effects of convection and diffusion. In particular, OS methods are often
to solve convection—diffusion problems that are of convection dominated nature; see |
(and the references therein).

The motivation for operator splitting methods lies in that it is easy to combine mode
methods developed within the hyperbolic community for tracking discontinuous solutic
with efficient methods (e.g., multigrid) for solving implicit discretizations of the paraboli
diffusive step, thus giving a powerful and efficient numerical method designed for resolvi
sharp gradients. From a software development viewpoint, this can be done in a step
(plug-and-play) manner, starting with a simple solver for each subproblem and then rep
ing each solver independently of the other by a more advanced solver until a suitable I
of sophistication is reached.

The obvious disadvantage of operator splitting methods is the temporal splitting err
Consider a scalar, convection-dominated problgn f (U)x = cuyy. If the equation pos-
sesses a viscous shock profile, this profile will appear on a spatial scale ofsoatelr
move on a time scale of ordé¢f’(u)|. Recent studies [2, 20—24] have shown that unles
the splitting step is of order, the temporal splitting error in OS methods can be significar
in regions containing viscous shocks. The resulting incorrect balance between convet
and diffusive forces appears as too wide shock layers in the numerical solution. Thus, tc
solve viscous shock profiles correctly, one must resort to very small splitting steps, ther
imposing a time step restriction that is not present in the underlying numerical methods
the convective and the diffusive step. In fact, the splitting step needed to resolve the sk
layers correctly may be much less than the one needed to resolve the interaction of vis
waves.

Small splitting steps should be avoided (if possible) for two reasons: computatio
efficiency and spatial accuracy. Increasing the number of splitting steps usually me
increasing the runtime. Moreover, for numerical methods having stability restrictions, 1
highestpatialaccuracy is often obtained when the time step is close to the stability limit. F
these two reasons, one should try to pick the splitting step as large as possible. To reduc
influence of temporal splitting errors in OS methods and allow for the use of large splitti
steps, theorrected operator splittingCOS) method was introduced by Karlsen and Risebr
[23]. The COS method was further developed and successfully applied by Katlaem
a series of papers [20-22, 13]. The forerunner for the scalar COS method was the mod
method of characteristics for nonlinear scalar parabolic problems introduced by Espe
and Ewing [11] and Dahle [2], and further developed and analysed by Dahle, Espedal,
their collaborators [2—6] in the context of reservoir simulation. The relation between t
modified method of characteristics and COS is discussed in the lecture notes [12].

The main idea behind the scalar COS method is to take into account the unphys
entropy loss (due to Oleinik’s convexification) produced by the hyperbolic solver in tl
convective step. The COS approach uses the wave structure from the convective st
identify where the (nonlinear) splitting error occurs. This potential error is then compensa
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for in the diffusive step or in a separate correction step. As a result, the COS method exh
the property of resolving accurately internal layers with steep gradients, gives very li
numerical diffusion, and, atthe sametime, permits the use of large time steps. In addition,
numerical method seems to capture all potential combinations of convection and diffus
forces, ranging from convection dominated problems (including the purely hyperbolic ca
to more diffusion dominated problems, all within the same application!

The purpose of this paper is to derive a thorough understanding of the nonlinear me
anisms behind the viscous splitting error typically appearing in operator splitting methc
for systems of convection—diffusion equations. This mechanism is well understood in
scalar case. In Sections 2.1 to 2.3 we introduce in more detail the viscous splitting applie
one-dimensional systems, discuss the nonlinear mechanisms behind the temporal spl
error, and introduce a general correction strategy that generalizes the scalar COS algor
[23]. Then in Section 2.4 we suggest particular numerical methods for solving the sj
problems introduced by the COS method and describe its numerical realization in de
In Section 3 we demonstrate the novel COS algorithm by applying it to tw@23ystems
of convection—diffusion equations modeling one-dimensional flow in porous media. \
present a two-dimensional extension of the COS method based on dimensional splittin
Section 4. Finally, we make some concluding remarks in Section 5.

2. OPERATOR SPLITTING METHODS FOR GENERAL SYSTEMS

To describe of our ideas in more detail, we consider the Cauchy problenxféns > 1)
systems of convection—diffusion equations

®U + 3 F(U) = Da2U, U(x,0) = Ug(x) (1)
wherex € R andt > 0. HereU = (uy, ..., u;)" is the unknown state vectoE (U) =
(f1(U), ..., f,(U))Tis avector-valued function of clag€%, andD = diag(e1, ..., &) > 0

is a constant diagonal matrix. The linear diffusion operator is chosen for simplicity;
principles introduced below also apply to more complicated nonlinear (degenerate)
fusion operators. We always assume that the initial functigx) is of bounded total
variation, i.e.lUp € BV. For a class of systems of the type (1), existence (and uniquene:
of classical solutions was established by Hoff and Smoller [17] using a finite differen
scheme.

2.1. Semi-Discrete OS

LetS; denote the solution operator taking the initial dggax) to a weak solution at time
t of the purely hyperbolic problem

®V +F(V) =0, V(X,1) = Vo(X), )

i.e., we writev(X, t) = Sivo(X) for this weak solution. For strictly hyperbolicx ¢ systems
with initial data having small total variation, global existence of weak solutions was prov:
by Glimm [15]. For stability and uniqueness of weak solutions, we refer to the paper
Bressan, Liu, and Yang [1].
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Next, letH; denote the operator taking the initial d&g(x) to a weak solution at time
t of the purely parabolic problem

HW = DIFW, W(x, t) = Wo(X), ®)

i.e., we writeW(x, t) = H;Wp(X) for this solution. For initial data of bounded total varia-
tion, the weak solution of (3) is a classical solutionffor 0, with the initial datdJ, taken
in the strongL! sense on compact sets. This can be easily seen from the representz
formula for the solution of the linear heat equation.

In what follows, we consider a fixed final computing tifie> 0. For simplicity we also
choose a fixed splitting stefpt > 0 and an integeN;, such thatN; At = T. Then we define
the semi-discrete OS algorithm by

Uat(-, NAL) i= [Hat 0 Sat]"Uo(), n=0,..., N:. 4)

In the scalar case, it can be proved that converges irL.! on compact sets to the unique
classical solutiord of (1) as the splitting steprt tends to zero. The convergence proof
is based on a unifornBV (space) estimate for the splitting approximation and Helly’s
theorem; see Karlsen and Risebro [24] for details. In general, it is not possible topYove
estimates for systems and thus the Helly framework cannot be used to prove convergen
operator splitting methods. However, it is possible to prove a Lax—Wendroff type theor
for splitting methods for systems of parabolic equations:

THEOREM 2.1. If the splitting method4) converges to a limit -, t) € BV, then this
limit is the unique classical solution ¢f).

The proof goes along the lines of [18]. The theorem shows that (4) can indeed be L
as a basis for constructing numerical solution algorithms for (1).

In applications, the exact solution operatésandH; in (4) are replaced by numeri-
cal methods. We will use front tracking as defined by Risebro [27-29] as an approxim
solution operator for the hyperbolic part. For the parabolic part, we here use a sir
explicit central difference method. The methods will be introduced in more detail in tl
next section. Meanwhile, let us stress that the method for the diffusion part is delibera
chosen to be as simple as possible to focus on the main ideas of our COS strategy
generally should be replaced by a more sophisticated method. We mention that Daw
Wheeler, and collaborators [7—10, 32] use operator splitting algorithms similar to (
In their splitting algorithm, the hyperbolic problem (2) is solved ly> 1 local time
steps (for each splitting step) with an explicit Godunov type method, while the diffusit
equation (3) is solved implicitly.

2.2. Nonlinear Error Mechanisms

In the introduction we stated that OS approximations can be too diffusive near visc
shocks when the splitting stefet is large. Karlsen and Risebro [23] point out that this
splitting error is simply a manifestation of the entropy condition that is imposed in tt
hyperbolic convection step. Let us consider sigalar case. The entropy condition intro-
duces a local linearisation df(-) once a shock is formed in the convection step and thi
linearization represents the entropy loss associated with the formation of a shock in
hyperbolic solution. Thus, the evolution of thgperbolicsolution is governed locally by
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FIG. 1. (Left) A single shock solution from a convection step. (Right) The corresponding residual flu
function; flux function f (solid), convex envelopd,, i.e., local linearization (dash), and residual fldxs
(dash-dot).

some convex/concave envelofieof f between the left and right shock values. A similar
linearization can be introduced locally for tharabolicproblem; that is, the flux function

f can be decomposed into a convective pRriand a self-sharpening paft— f; that
tends to counteract the diffusive forces. Loosely speaking, we saythat/erns the local
translation andf — f. the shape (or structure) of the viscous front. In the OS algorithn
the local residual fluxf — f. is disregarded in the hyperbolic step and the correspondir
self-sharpening effects are therefore not taken into account in the splitting, resulting i
splitting error. Figure 1 gives an illustration f f;, and the residual fluX,es:= f — f.in

the scalar case.

For a general system, the error mechanism is quite similar. To study it, we consider
propagation of a single viscous shock. Assume that the splitting step is sufficiently large
that a shock has developed in the hyperbolic substep (2), i.e., the solitian= t) con-
sists of a single discontinuity at= x with left and right shock valueg' = (v}, ..., v))T
and V' = (v}, ...,v))T. Then the behavior (forward and backward in time)\wdx, t)
locally around(x; t) is governed by the linearized hyperbolic problem

V! forx <X,
V', forx > X,

*V +0(0V)=0, V(x,t)= { (5)

whereos is the Rankine—Hugoniot shock speed satisfying
FIV)—F(V) =a(V' = V"),

Weclaimthat a large part of the splitting error occurring locally arogad) in the standard
OS algorithm can be understood in terms of the difference between the nonlinear syste
(1) and the linearized system in (5) with right-hand sii#?V/, or in other words, in terms
of the differenceé) (F (U) — oU). In (1), the diffusion caused by the second-order operatc
is perfectly balanced by the self-sharpening effects due to the nonlinearity in the convec
operator. In the OS strategy, this self-sharpening disappears once a shock develops be
F(U) is in effect replaced by U locally. Thus, one step in OS effectively amounts to
solving U + dx(cU) = Da2U and not (1).
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2.3. A Novel COS Strategy

To compensate for the loss of self-sharpening effectsthkarCOS approach proposes
to include the residual flu¥,es in the diffusion step of the splitting. The COS method
therefore replaces the purely parabolic split problem (3) by

QW = 3y Fres(W; X) = DZW,  W(X, 0) = Wo(X). (6)

As an alternative, the residual flux can be included in a separate correctiord;Mep,
ox Fres(V; X) = 0; see [23, 21] for more details. Lettirfg denote the solution operator
associated with (6), the COS solution may then be defined as

Uat (-, NAL) = [Par 0 Sat]"Uo(-). (7)

What we have done so far might seem a bit peculiar. We have taken the convecti
diffusion equation (1) and replaced it by a hyperbolic equation (2) and another convecti
diffusion equation (6), where the flux term in (6) is seemingly more complicated than t
one in (1). However, we see that whitecontains convectivand self-sharpening effects,
Fres Only contributes self-sharpening effects. Thus, viscous shock fronts are moved to
correct location in the convective step and given a correct shape in the diffusive step.
solution process has also been simplified from a numerical point of view, i.e., with a fu
discrete version of (7). Parabolic equations of the kind (1) and (6) will typically be solve
by some implicit scheme, involving iterative solution of nonlinear systems of equatior
The hyperbolic step can therefore be seen as some kind of preconditioner or a mean
providing a good initial guess for the iteration, and the iteration process will converge fas
for (6) than for (1). If the method used to solve the hyperbolic step is fast compared w
the nonlinear iteration, we gain something in terms of efficiency, see, e.g., [4, 5, 11]. In
next section we introduce one such method, which employs a very fast, uncondition:
stable, front tracking method for the convective step.

When applied to systems of parabolic equations, the correction algorithm needs tc
reformulated, since one cannot simply write down the solution of the hyperbolic step
terms of convex/concave envelopes. Instead, we identify the following term

a><|:res(U) = ax(F(U) - G_U), (8)

for each discontinuity in the solution from the hyperbolic step. Then, the parabolic st
problem (3) is modified locally by addinB.s(U), giving the new split problem (6). By
integrating (8) with respect to, we get theesidual flux

Fres(U) = (F(U) = F(V")) —a (U — V"), ©)
where we have chosen the constant of integration such that
Fres(Vl) = Fres(vr) =0.

2.4. A Fully Discrete (C)OS Method

The operator splitting methods introduced above result in two different subproblems t
each must be solved numerically. Therefore, before we describe the OS and COS appr
in more detail, we introduce numerical methods for solving the subproblems.
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2.4.1. Convection Solver

In this section we describe the front tracking method [27-29] for solving systems
conservation laws (2)

oV +oF(V) =0, V(x, 0) = Vo(X).

The initial functionVy(x) is assumed to be of bounded variation. Front tracking is a
algorithm for computing a piecewise constant approximatiol g, t). First, V is ap-
proximated by a step function so that a Riemann problem can be associated with each j
in the approximate initial data. The solution of each Riemann problem is approxima
by a step function. This is most accurately achieved by using the Lax construction for
exact Riemann solution, utilizing the local system of coordinates formed by the wave cur
around two constant states in state space. The Riemann solution consists of a set of cor
states connected by simple waves. In the front tracking approximation, rarefaction wa
are approximated by step functions sampled along the wave curves (according to a pre
user-defined paramet&y), while the rest of the Riemann solution is left intact. This way,
each Riemann problem produces a sequence of jump discontinuities (fronts) that travel
a finite wave speed. The Riemann solution is represented by a list of fronts sorted accor
to increasing wave speed.

A global solution (inx) is formed by connecting the local Riemann solutions and consis
of constant states separated by space—time rays, i.e., a list of fronts sorted from left to ri
There will be a first time at which two or more space—time rays intersect, i.e., two
more fronts collide. This collision defines a new Riemann problem with states given
the rightmost and leftmost of the colliding fronts. The colliding fronts are taken out «
the solution. Then the Riemann problem is solved and the emerging fronts are inse
into the front list. This way, the algorithm proceeds from collision to collision. Notice the
no computations are necessary between collision times. To reduce the number of v
interactions, it is customary to perform some data reduction, i.e., remove weak way
see [29]. The numerical methodusconditionallystable and very fast.

2.4.2. Diffusion Solver

The parabolic step is a Cauchy problem of the form
*W + 9 G(W) = 3ZD(W), W(x, 0) = Wo(X), (10)

whereG is in applications the residual flux term (see (8)). The initial functgg(x) is
assumed to be of bounded variation. To approximate the solWtion t), we introduce

a mesh in thgx, t) plane where the spatial grid points are denotedpwnd the time
levels byt,. We denote the spacing in tlreandt variables byAx andz, respectively; i.e.,
(xj, tn) = (j AX, nt). The value of the difference approximation(af, t,) is denoted by
W/ To solve this system, one can for instance use the explicit, central finite differer
method

W W G(WR) —G(Wy) _ D(Wiy) —2D (W) + D(WLy)

T 2AX h (AX)2 (11)
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This scheme is stable provided the discretization parameteard Ax satisfy the following
conditions

T < 0.5AX%%/e, Axmax|ig| < 2e,

whereig denotes the eigenvalues®f. In the case wheB (W) = W, i.e., linear diffusion,
convergence and error estimates for this scheme are shown in [17].

The stability conditions above may put severe restrictions on the discretization para
ters, especially onx for small values of. However, both these conditions can be weakene
or removed by using a more sophisticated scheme. The second conditonisnemoved
by using an upwind discretization of the fl@ and the first condition is weakened by us-
ing an implicit scheme. Generally, the most efficient method would therefore be an impli
discretization combined with an efficient (non)linear solver. In this context, the importe
point to keep in mind is that (10) (wits equal to the residual flux term) is much closer
to being self adjoint than the original equation, since the front tracking will give almo
“exact” information about the hyperbolic structure of the problem (see also the discuss
after (7)). This means that any iterative procedure will be much more efficient for (1
than (1), and the numerical approximation properties will be better [2-6, 11]. However,
keep the technical details at a minimal level, we here choose simple explicit schemes
Section 3 we use the scheme in (11), while in Section 4 we replace the discretization of
G-term by a suitable upwind difference to avoid the restriction on the grid size.

2.4.3. The Splitting Method

Given numerical methods for the two substeps, we can now describe the (C)OS methol
the convection—diffusion problem (1). The construction of the residuaFlxs described
in detail later on.

Letting Ax > 0 denotes the grid spacing, we introduce the grd= jAXx};cz. Our
approximate solutions will be piecewise constant functions with respect to the grid ce
{l; = [Xj, Xj+1)}jez- Therefore, we need the scalar projection operatdefined by

T2(X) = i /| z(5)dx, forallx elj, (12)

for any scalar functior(x) € BV, and the operatdi defined by[1Z = (7 zy,...,72z)",
for any vector-valued functio = (z1, ..., z)" € BV. We next consider a fixed final
computing timeT > 0, and choose a splitting stept > 0 and an integeN; such that
N;At = T. UsingA as a short-hand notation for the discretization paramétexs At, §),
we define our piecewise constant COS approximdtlan R x [0, T] — R by

Ua(x, 1) :i=U"X), (X, t) e Rx ((n—1At, nAt], n=1,..., N, (13)

where U, (x, 0) := U%x) and U° := IMU,. For notational convenience, we have sup-
pressed the dependency anin U™, We next explain how to inductively construct the
piecewise constant functidh™(x) from the knowledge of the piecewise constant functior
U"(x). The construction consists of two main steps:
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Step 1 (Convection).Let S;: Vo be the front tracking solution of the hyperbolic problem
7V +0F(V) =0, V(x, 0) = Vo(X).

where we have suppressed the dependency on the discretization parameiads in S;.
We then define the intermediate solution

Un+l/2 — SAIU n'

Step 2 (Diffusion). Introduce a local time stepsatisfyingr < 0.5Ax?/¢. Furthermore,
we letN, be an integer such that, T = At. Let ;W be the finite difference solution of

FW + 3y Fres(X, W) = DZW, W(x, 0) = [TWp(X),

where we have suppressed the dependency on the discretization parawwetady in 7;.
The residual fluxFes(X, -) depends on the hyperbolic solutioif*+%/2 and its construction
is explained in detail below. Finally, the COS solutidfit! is defined as

Un+1 — PAt o HUn+1/2’
or alternatively as
U™ = [Par o IToSaJUM.

Note that if the residual flu¥esis set to zero, the above algorithm reduces to a standa
OS algorithm. In Section 3, we demonstrate numerically that the funttijpis a good
approximation to the exact solutithof the convection—diffusion problem (1). In particular,
whenAt is large, the COS method gives significantly more accurate treatment of viscc
shocks than the corresponding OS method.

Remark. One should not confuse the splitting st&p, which is also the time step used
by the hyperbolic solver (i.e., the front tracking method), with the time steged by
the parabolic solver. Since the parabolic step is here solved (for simplicity) by an expli
method, we have a stability constraint enHowever, there is no CFL-constraint on the
splitting stepAt! Since the front tracking method is unconditionally stable, we can therefo
takeAt = Mt with M > 1, and this is indeed what we do in practice.

Remark. Although the exact solution of (1) is a smooth function, our approximatio
Ua(:, t) is merely piecewise constant. Increased accuracy in space can be obtainec
replacingU, (-, t) with a piecewise linear interpolant.

2.4.4. Construction of the Residual Flux

Given a piecewise constant, front tracking solutidf-/2, we can now construct the
residual fluxF.es(X, -) appearing in (6). We assume that the discontinuitié$of/?(x) are
located at the pointg ). LetU; = (ui, ..., u))T andU; 1 = (ui™, ..., ui*YH)T denote the
values ofU"*Y/2(x) in the intervals X _1, x;) and, [, Xi+1), respectively. Locally around
theith discontinuity emerging fronix;, to) the nonlinear problem (2) is governed by the
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linearized problem

Ui, for x < X,
OV +0x(0iV) =0, V(x, to) =
Uiy1, forx > x,

whereo; is the Rankine—Hugoniot shock speed satisfyi@dJ;) — F(Uj;1) = oy (U; —
Ui 11). Motivated by the discussion in Section 2.2, we define the residuaFflyassociated
with theith discontinuity as

i {(F(U) —FU)) —oi(U —Up, U e (U, ui™) x--x (uh, uyt),
FresU) = .
0, otherwise.
Note thatF/,(U;) = Fl(Ui;1) = 0.

We note that this is the same residual flux as Karlsen and Risebro [23] presented, sinc
shock speed; has to fulfill the Rankine—Hugoniot relation. We also note that the consta
of integration is of no importance since only derivativeskafs are present in the COS
equations.

Although aresidual flux term can be identified for every discontinuity in the front trackir
solution, they should not be included for discontinuities approximating rarefaction way
or for weak shocks. In practice we therefore only include residual terms for shock wa
with strength exceeding a user-defined threshald’he process of identifying relevant
residuals can be simplified by tagging fronts in the front tracker according to wave ty
(shock/rarefaction/contact).

Having defined the residual fluxes in state spage . . ., u,), we need to specify where
to apply them in physical space (i.e., intervalx)nThis can be done in several ways. For
explicitdiscretizations we apply the following strategy: We observe that in each spatial
terval where the solution is monotone in all its components (henceforth catiadtonicity
interval), all residual fluxes are defined on disjoint sets in state space. Therefore, we se
residual flux to zero outside (a subset of) the associated monotonicity interval, i.e.,

Fres(X, U) = > Fie(U)xp, (%),

where x; (x) denotes the indicator function of the interndalc R and D; is the (subset
of) the monotonicity interval. Using the monotonicity of the solution, we can determine
unique residual flux also in regions of changing monotonicity. Although the monotonici
intervals may change throughout the diffusion step (as the discontinuity is smoothed ¢
they are always well defined and easy to compute.

This approach works well for explicit schemes, but it does not apply to implicit di
cretizations when the discontinuity coincides with a change in monotonicity, i.e., when:
left or right state of the discontinuity is a local extremum in one of its components. T
reader is referred to Figure 15 for an example where such a situation occurs. For imp
discretizations we therefore use a much simpler approach where the user prescribe
length of the intervals where the correction is applied. To avoid overlap of residual fl
domains, it might be necessary to clip the spatial correction intervals at each endpoint
this end, one can use monotonicity information and for instance specify that the inten
should not exceed the midpoint between the discontinuities of two consecutive resic
fluxes (i.e., not exceetk + Xi11)/2).
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FIG. 2. (Left) Shock plane and one component of the flux for a system of conservation laws. (Right) T
corresponding residual flux component.

Unfortunately, specifying a reasonable length for the correction intervals must be ba
on experience. For explicit discretizations, we have observed that the corresponding
ternal boundaries” introduced in the diffusion step may lead to unphysical effects
certain cases if, for instance, the length of the interval is underestimated by the u:
one example is reflections breaking up the monotonicity of the viscous front. For ¢
plicit schemes we therefore advocate the approach based upon monotonicity inter
and for implicit schemes the approach based upon specified interval lengths. Howe
to show that both approaches work for explicit schemes, we construct residual flu:
based upon monotonicity intervals in Section 3.1 and based upon specified lengtt
Section 3.2.

Remark. For scalar conservation law$es(-, U) may be discontinuous for each fixed
u, while feq(X, -) is always continuous for each fixeq see Fig. 1. This is, however, not
the case for systems of conservation laws. Each compdrr'gg()t, U) of Fes(X, U) may
be discontinuous for each fixedl and, more important, is always discontinuous for eacl
fixed x, expect for the trivial case with no shock; see Fig. 2.

3. APPLICATIONS

In this section we present numerical realizations of the novel COS strategy for t
particular 2x 2 systems describing flow in porous media. Simulations for a two-phas
multicomponent model are reported in Section 3.1 and similar experiments for a triangu
three-phase model in Section 3.2.

3.1. The Polymer System

We consider the initial value problem for the followingx22 system of parabolic
equations:

®S+ dxf(s, ©) =ed?s

(14)
d[sc+ a(c)] + dx(cf(s, ©)) = ed2[sc+ a(o)],
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where(s, ¢) is the unknown state vectof, = f (s, ¢), a = a(c) are given functions

s? 0.2c
’ 5. a0 = ——,
sc+ u(d+ve)(1—-s) 1+c

f(s, c) = (15)
ande > 0is a small scaling parameter. For all numerical examples in this segtien).5
andv = 2.

The system (14) models a polymer process in enhanced oil recovery; see [30] and
erences therein for details. Existence, uniqueness, and stability properties for a sm
solution of the Cauchy problem for (14) have been established by Tveito [30]. The Riem:
problem for the corresponding inviscid, nonstrictly hyperbolic system is solved in [19] a
a front tracking method is presented in [28]. One special feature of the inviscid systen
that the eigenvalues; = fs andi;, = /(s + a;) coincide along a curvé in state space.

Introducing the quantitp = sc+ a(c), the mathematical model (14) takes the form

s+ 0y f(s, ©) = ed’s
(16)
&b + dx(cf(s, ©) = £d7b.

3.1.1. The Riemann Problem

The solution of the Riemann problem for (16) (with= 0) is a composition of four
simple wavess- andc-rarefactions an@d- andc-shocks. For Riemann problems with no
jump in the concentratiog, the solution reduces to that of the Buckley—Leverett equatior
which is well known. Solutions of this kind will simply be termsédvaves, although they
may be compositions of shocks and rarefactions.

For Riemann problems with a jump @pthe system behavior is more complicated since
the eigenvalues of (16) coincide along a cuvén phase space. In generalglf > cR the
solution will consist of one-shock and possibly sonsewaves. Ifc- < cR, the solution will
be made up o$-waves and-rarefactions.

For data completely on one side Bf the solution is a composition of orgewave and
onec-wave. However, when the left and right statésandu® are on different sides df,
the solution can consist of up to five (or six) constant states, separated by simple wa
This case is shown in Example 2 of this section.

Due to the nonstrict hyperbolicity, there is one special case, called an overcompres
shock, where both the andc-characteristics go into the shock. The corresponding solutic
can be interpreted as the exact superposition & @amd ac-shock, see Example 3 of this
section.

ExampPLE 1. In our first example, we consider discontinuous initial data

(1.0, 0.5, x<0.1,

(S0, Co)(X) = {(0.1, 01), x>0.1

In the inviscid case, the initial data correspond to a Riemann problem, which is solved
ans-shock, followed by &-shock and as-rarefaction wave.

Figure 3 shows the approximate solution at time 1.0 for ¢ = 0.005 computed using
OS and COS with one time step on a 256 grid. Since the time step is much larger t
the diffusion scale, OS gives a considerable smearing af-8teock, whereas theshock
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FIG. 3. Example 1. Solution at time= 1.0 computed using one OS step (left) and one COS step (right)
The solution is plotted in primitive variablgs, c) at every second grid point. A reference solution computed
by the central difference scheme (11) is included; the solid line gives-ttmnponent and the dashed line the
c-component.

contains little self-sharpening and is therefore represented quite accurately. When corre
effects areincluded, both shock fronts are resolved almost perfectly. In this example, resi
fluxes are defined for both tlseshock and the-shock (see Fig. 4), although the latter gives
little effect. No fluxes are defined for the discontinuities in the rarefaction wave.

Figure 4 reports pointwisk* errors for OS and COS. As expected, the major erro
contribution is around the-shock. However, both OS and COS overshoostkemponent
in the interval fromx = 0.1 to x = 0.5. Because of mass conservation, thshock is
therefore placed a bit to the left compared with the reference solution; hence the high p
in the pointwise error for COS.

To study the convergence of the splitting methods, we fix the spatial discretizatiéh to
blocks on the interval{0.25, 2.25) and increase the number of splitting steps by powers ¢
two. Errors for this convergence study are reported in Table 4 for0.01 ands = 0.001.
Here the error is defined as

Z HU| ||l’ (17)

il

1 T T T T T T T T T ] 0.25

09+

081

0.7+

06+

0.5

04} .

03 \

02+ !

0.1r =

0 02 04 06 08 1 . 12 14 16 18 2 0 02 04 06 08 1 M 12 14 16 18 2

FIG. 4. Example 1. (Left) The solution after the hyperbolic substep compared with the reference soluti
(Right) Pointwise error in 2 norm relative to the reference solution.
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TABLE |
Example 1. Estimated Errors (17) and Convergence Rates for OS and COS
with Fixed Spatial Discretization

e =0.01 ¢ =0.001

N os Rate COSs Rate oS Rate COs Rate

1 4.42e-02 — 1.96e-02 — 1.88e-02 — 3.47e-03 —
2 290e-02 061 1.61e-02 0.29 1.26e-02 0.57 5.18e-030.58
4 197e-02 056 1.22e-02 040 8.16e-03 0.63  4.30e-03 0.27
8 1.27e-02 0.63 853e-03 051 5.69e-03 0.52  3.27e-03 0.40
16 7.57e-03 0.75 5.65e-03 059 4.18e-03 0.44  2.52e-03 0.38
32 4.16e-03 086 3.58e-03 0.66 3.27e-03 0.35 2.22e-03 0.18
64 2.30e-03 0.86 2.45e-03 055 2.78e-03 0.23  2.17e-03 0.03
128 1.48e-03 0.63 1.53e-03 0.68 2.85e-03-0.03 2.58e-03 —-0.25
256  1.30e-03 0.19 1.31e-03 0.23 3.61e-03-0.34 3.52e-03 -0.45

Note N, denotes the number of splitting steps.

where (i1,...,u,) denotes the splitting solution andui(...,u}) the reference
solution.

Fore = 0.001, the error for OS decreases upNo= 64, but then starts to increase as
a result of increasing numerical diffusion introduced by the projection in the hyperbo
steps. For COS, the error increases when going from one to two splitting steps, bec:
with two splitting steps the-shock is not fully formed in the second hyperbolic step, anc
hence the residual flux is weaker. With four (or more) splitting steps, a residual flux for t
c-shock is only formed in the first step.

Fore = 0.01, the OS error decreases forldll (but it increases foN; = 512). By intro-
ducing corrections, we remove most of the splitting error around-gteck, but not in the
interval fromx = 0 to x = 1.5; see Fig. 5. Therefore, the COS error also decreases wi
the increasing number of splitting steps. Sincedfghock is completely smoothed out by
the diffusive forces, the corresponding residual flux is formed only in the first hyperbo
step.

0.035

0.03 +

0.025}

0.02

0.0156}

0.01 ¢

0.005

0 02 04 06 08 1 X 12 14 16 18 2

FIG.5. Example 1. (Left) Thes-component of the reference solution fo= 0.01 (solid) and 0.001 (dashed).
(Right) Cumulative L error of thes-component for OS and COS with one and two splitting steps fer0.01.
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FIG. 6. Example 2. (Left) The solution iiis, c)-space; solid line represents the solution o 0.0025
at timet = 1.0 and the dashed line the inviscid solution. (Right) BhReomponent as a function of spatial
coordinatex.

ExAMPLE 2. The next example demonstrates that the corrected splitting method a
applies to nonmonotone data. To this end, consider the Riemann initial data

(0.45, 0.0), x <O0.1,

(%0, C)(X) = {(0.2, 10). x> 01

In the inviscid case, this problem gives the maximum number of intermediate states
the Riemann solution, i.e., a solution of the foun = u! > u2 5 u3 > uR, where>
denotes ars-wave and—> a c-wave; see, e.g., [19, Ex. 8.2]. The solutions in the inviscic
case and for = 0.0025 are shown in Fig. 6.

Figure 7 shows approximate solutions computed by OS and COS &b gri@; es-
timated ! errors in each grid cell are shown in Fig. 8. With one splitting step, CO:
resolves the leading-wave accurately. However, since a residual flux is also identifie
for the s-shock atx ~ 1.26, COS produces an extra peak in the solution (resembling tt
inviscid solution). With two splitting steps, the OS and COS solutions coincide alor
the trailing edge. With four splitting steps, COS gives a fairly accurate approximation
the exact solution. Notice that four splitting steps corresponds to a CFL number arot
300!

ExaMPLE 3. Inthe last polymer example, we consider a Riemann problem correspor
ing to an (over) compressive shock 5 uR in the inviscid case; compressive shock
means that both the- and thec-characteristics go into the shock and contribute to the
self-sharpening.

The Riemann problem is given by

(0.75, 0.8), X < 0.25,

(S0: Co)(X) = { (0.839619..,04), x > 025

If this Riemann problem is perturbed slightly, the solution changes from a single shc
to a composition of waves moving with almost the same speed (as shown in Fig. 9). Tt
are two possible results of a perturbation; either a monotone solutioh ul > uRora
nonmonotone solutiont -> u2 > uR (as shown Fig. 9).
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FIG. 7. Example 2. Comparison of OS (small dots) and COS (large dots) with one, two, and four splitti
steps. The plots show tleecomponent versus at timet = 0.5 with markers at every eight grid point.

In the viscid case, the Riemann problem will be perturbed instantly. The result is a tr
nonlinear phenomenon, where monotone data gives nonmonotone solutions. Therefore
solution of the inviscid case is a poor approximation to the true solution, and both the
and COS strategy will fail to resolve the nonmonotonicity in the first time step. Figure :
shows the exact solution at tinhe= 1.0 along with the OS and COS approximations for one
time step. The exact (reference) solution has a dip due to the presence of the diffusion t
which instantly perturbs the initial Riemann problem. The OS approximation is monoto
and does not resolve the nonlinear dynamics between the convective and diffusive for

_4 —4
Py Al . . . . Py Sl I .
. 1 step 1 step
41| - 2 steps . ] 4 2 steps
—— 4 steps ] —— 4steps
35 : B 35
3
25
2L
151
1t
0.5
0t
-05 -05
0.8 1 1.2 1.4 16 1.8 2 08 1 1.2 14 1.6 18 2

FIG. 8. Example 2. It error versus the cell center in each grid cell for OS (left) and COS (right).
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FIG.9. Example 3. Wave patterns in teecomponent as a function a&ffor two slightly perturbed right states
(s} = f + 0.001 ands} = s§ — 0.001) for overcompressive shock case.

thereby giving the usual smearing of the steep gradient. COS, on the other hand, doe:
produce the same excessive smearing and gives a very small dip introduced by the nonl
residual. In both cases, the solution misses on the position of the shock because of r
conservation.

With two time steps, as in Fig. 11, the difference is more distinct. Neither OS nor CC
are able to resolve the dip in the solution properly. This is due to splitting errors from t
coarse time discretization. However, when comparing OS and COS, we see that CO
much closer to the reference solution in the steep gashock).

In Table Il we report the estimated errors for a number of runs with decreasing splitti
steps, along with convergence rates. COS and OS have more or less the same rat
convergence. We note, however, that COS in general has lower error than OS. Thi
caused by the sharpening effect of the residual flux.

When the number of splitting steps becomes large, the solutions deteriorate due to
many projections that are performed; see the discussion in Example 2.

Remark. In the above examples we have not elaborated on how to choose the threst
parametet used to identify residual fluxes. When choosing this parameter there are t

0.84H — Solution 084 Sontion T T - ______ QST OSUCSSUPPSLS B
e Inviscid v+ Inviscid g
- - Reference : - = Reference L7
082} 4 082t
1
'
o8} N 08}
i
i
1
0.78F 1 0.781
!
r
P
0.76F " Q.76
I
. T
~ |
0.74} N f 0.741
N
A
Ny
0.72 . 072 L
08 09 1 1.1 12 13 14 15 16 1.7

08 09 1 1.1 12 13 14 15 186 17

FIG.10. Example 3. Comparison of tteecomponent as a function affor splitting solutions at timé¢ = 1.0
with ¢ = 0.005. The approximate solution is computed with one step of COS (left) and one step of OS (right)
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FIG.11. Example 3. Comparison of tleecomponent as a function a&ffor splitting solutions computed with
two steps of COS (left) and OS (right).

points to consider: Firsy; should be sufficiently small, so that relevant residual fluxes ar
identified. Secondy should be chosen so large that no residual fluxes are identified f
small-scale oscillations appearing in the hyperbolic solutions (e.g., post-shock oscillatic
or oscillations for data near the transition curve [31]). Using these rules of thumb, a suite
parameter can easily be identified in each case, without any special tuning necessat
all the above runs, we used a parameter valug ef 0.1 (as the size of the oscillations
typically were below 0.05).

3.2. A Triangular Three-Phase Flow Model

We consider the initial value problem for the<22 system of parabolic equations

U+ dy f(u) = edzd(u),

(18)
dv + 0xg(u, v) = £d2d(v),

whereu andv are phase saturations (gas and water, respectivier)dg the fractional flow
functions d the diffusion function, and is a small scaling factor. The Jacobian matrix of the

TABLE II
Example 3. Estimated Errors (17) and Convergence Rates for OS and COS
with Fixed Spatial Discretization Ax = 27°

¢ = 0.005 e =0.01
N; oS Rate COSs Rate oS Rate COos Rate
6.93e-03 — 4.31e-03 — 8.11e-03 — 5.05e-03 —

3.94e-03 0.57 2.95e-03 0.38 4.40e-03 0.61 3.60e-03 0.34
2.15e-03 0.61 2.67e-03 0.10 2.26e-03 0.67 2.15e-03 0.51
1.13e-03 0.64 9.94e-04 0.99 1.16e-03 0.67 1.02e-03 0.74
16  6.23e-04 0.60 5.84e-04 0.53 6.22e-04 0.62 5.86e-04 0.56
32 3.89e-04 0.47 3.77e-04 0.44 3.82e-04 049 3.71e-04 0.46
64  3.04e-04 0.25 2.97e-04 0.24 2.80e-04 0.31 2.76e-04 0.30
128  2.85e-04 0.07 2.82e-04 0.05 2.48e-04 0.12 2.46e-04 0.11
256  2.8%e-04 -0.02 2.88e-04 —-0.02 2.47e-04 0.00 2.46e-04 0.00

oA~ DN

Note N, denotes the number of splitting steps.
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FIG. 12. Example 3. Splitting solutions in state space after one step (left) and two steps (right). The thin sc
lines represents the waves of the slight perturbatisfisgdsy).

fractional flow functions is (lower) triangular, hence a triangular system. The system (:
models flow of oil, gas, and water in a porous medium. Generally, no systems arising fr
three-phase flow models are triangular, but by assuming that one of the phases, typi
the gas phase, is decoupled from the other two we get the system above. In many case:
is a reasonable assumption. Here we use flux functions [25]

u2
u2 4 (1 —u)2/10°

(1—uw?+u?/10 V2
1024+ (1 —u)?2 2+ (1—1v)2/10’

f(u =

g(u, v) =
and the diffusion function is given as
d(x) = 4x(1—x) +0.01,

which thus has the usual bell shape typically seen in reservoir models. For simplicity
small constant has been added to avoid degeneration of the system. Alternatively, we ¢
have treated the degeneracy by using upwind discretizations of the convective terms.
We present two numerical examples, one simple Riemann problem, and a Cauchy prot
with nonmonotone solution. In both cases, we compare COS and OS solutions agair
reference solution computed with a central difference scheme on a very fine discretizat

3.2.1. The Riemann Solver

The essential part of the hyperbolic solution operator in our operator splitting meth
is the Riemann solver whose construction depends heavily on the triangular nature of
system. The procedure for constructing the solution of the Riemann problem is founc
Gimse [14]. Let us very briefly recall the basic steps in this procedure.

We solve the Riemann problem for (18) with linearized flux functions (the linearizatic
parameter is denoted lBy> 0). The scalar decoupled equation ofthe first equation in
(18)) is easily solved, and the solutionconsists of a finite number (sayl) of constant
states. Rarefaction waves are approximated by step functions. Then we solve the (cou
equation forv (the second equation in (18)). In each region in ¢het) plane wherau is
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constant, the coupled equation reduces to a scalar equation. In order to solve the cot
equation, we must therefore solt scalar equations and connect together the solutior
from the neighboring regions. To find legal connection values, i.e., legalues on each
side of the interface between two regions, we must construct so-called H-sets. We mer
that the construction of the H-sets is the most time-consuming part of the Riemann sol
For further details on the Riemann solver, we refer to [14].

There are three wave types in the solution of the triangular Riemann problem. Fr
the scalar Riemann problem, we have rarefaction waves and shock waves. In addi
there are connection waves, i.e., waves connecting-fegjions in the(x, t) plane. The
connection waves will always have the same speed as the corresponding discontint
in u.

In the numerical examples below, the flux functions are linearized &vith0.01. This
sets a limit on the resolution of the front tracker and hence the expected accuracy of
solution.

Example 1. As for the polymer system, we consider first a simple Riemann problem

(0.4, 0.6), x < 1.0,

19
(0.0, 0.0), x> 1.0. (19)

(Uo, vo) (X) = {

The diffusion coefficient is set equal to 0.1, and we seek solutions at time0.5. The
finite difference operator uses a grid witthx = 0.01.

Figure 13 shows solutions computed using one step of OS and COS compared wi
reference solution. The COS method sharpens the shock frantioely. In addition,
the COS method incorrectly sharpens the quite smooth front iAs a result of this
sharpening, the error im close to the shock is larger for COS than for OS. The lef
plot in Fig. 14 shows local L error in each grid cell as a function of the position of
the cell center. The remedy for this erroneous sharpening is to decrease the time
Figure 14 (right plot) shows cumulative! lerrors for COS and OS with one and two
steps. We observe that already when two time steps are used instead of one, the errol
sharpening irv (at x ~ 1.5) is almost gone, and COS outperforms OS. This is becau:
the front inv is smoother in the second time step and therefore no residual flux is
fined.

0.7, T T T T 0.7

— 08 | — COS
06 RS --- Reference 08 =3 - - - Reference

. 25
x—axis x-axis

FIG. 13. Example 1. Solution of Riemann problem (19) at time 0.5 for ¢ = 0.1 computed using one step
of OS (left) and one step of COS (right).
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FIG. 14. Example 1. Error measurements for Riemann problem (19) atttiga®.5 for ¢ = 0.1. (Left) L*
error in each grid cell for COS and OS with one time step. (Right) Cumulatiegror for COS and OS with one
and two steps.

Example 2. In the second example, we solve the Cauchy problem for (18) with initie
data

0.0, X < 0.4,
Uo(X) = vo(X) = { X — 0.4, 0.4 <x < 0.8, (20)
0.4, x > 0.8.

Final computing time is = 1.0 and we set = 0.1. The finite difference operator uses a
grid with Ax = 0.01.

The performance of COS in this example is very good. In Figure 15, OS and COS solutit
computed with one time step are compared with the reference solution. The OS solu
is nowhere near catching the shock frontasiandv. On the other hand, the correction
achieved by adding the residual fluxes enables the COS method to resolve the shock fi
almost perfectly.

When going from one to two time steps in COS, we observe a nice decrease in the el
see Fig. 16 (left plot). However, when increasing the number of splitting steps to four, t

0.8 0.8,
0.7 A E 0.7r
— 08 i ~. — COS
-~~~ Reference ! N --- Reference
0.6 N 1 0.6
0.5 0.5]
@ @
o4 Foa
> >
3 3
0.3p 0.3+
0.2] 0.2
041 0.1
0 1 . . . \ . 0 : ) \ . . .
0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 35 4
x—axis X—axis

FIG. 15. Example 3. Solutions of Cauchy problem (20) at time 1.0 for e = 0.1 computed using one step
of OS (left) and one step of COS (right).
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FIG. 16. Example 3. Error measurements for COS for Cauchy problem (20) atttin#&.0 with ¢ = 0.1;
(left) L* error in each grid cell, (right) cumulative*lerror.

error increases almost to the level observed for one step; see Fig. 16 (right plot). The re:
is the way the residual fluxes are defined. If the distance between two shocks is less
the (prescribed) length of the correction intervals, the residual fluxes are only defined to
midpoint between the two shocks. When the time step decreases, the distance betwee
two v-shocks also decreases. As a result, the correction interval for each residual flux
decreases, and the sharpening effect is reduced. Thus the improvement of the OS sol
is smaller, but COS still gives a lower error than OS with the same number of time step
To study the convergence of OS and COS, we fix the spatial discretizatida 0.01 on

the interval (0, 4) and increase the number of splitting steps by powers of two. Table Il giy
errors and convergence rates for this convergence study=d0.1. The error is defined as

¢
E=> llu—ufl, (21)
i=1
where (1, ..., uy) denotes the splitting solution and(. .., u}) the reference solution.

TABLE 11l
Example 3. Estimated Errors (21) and Convergence Rates for OS and COS
with Fixed Spatial Discretization Ax = 0.01

e=01
N, oS Rate COSs Rate
1 2.76e-01 — 4.36e-02 —
2 1.75e-01 0.65 2.92e-02 0.58
4 9.76e-02 0.84 4.23e-02 -0.53
8 5.51e-02 0.82 5.59e-02 -0.40
16 3.19e-02 0.79 2.97e-02 0.91
32 2.15e-02 0.56 2.11e-02 0.49
64 1.80e-02 0.26 1.80e-02 0.24
128 1.99e-02 -0.14 1.99e-02 -0.15
256 2.30e-02 -0.20 2.31e-02 -0.21

Note N; denotes the number of splitting steps.
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We see that the error for OS decreases ul;te- 64, but then starts to increase as a resul
of numerical diffusion. The error for COS first decreases and then increasds fod, 8

as a result of decreasing distance between thevtsioocks (as explained above). Rgy
larger than 8, COS performs as OS.

Remark. The COS method gives very good results. Using an implicit diffusion solve
would make the runtimes go down and thus make the COS method very efficient. We h
not done this here, since we were merely interested in testing whether COS reduces
temporal splitting error compared to OS. In the COS method we have chosen to presc
the length of the correction intervals & with K = 10. Moreover, as for the polymer
system in Section 3.1, we choge= 0.1 as the value for the threshold parameter used t
pick out the shocks that define the residual fluxes.

4. ATWO-DIMENSIONAL EXTENSION

In this section we present a two-dimensional extension of the COS idea for the polyr
system using dimensional splitting. The same idea can be applied to other systems
higher dimensions. To add more realism to the equation, we also include a driving velo
field. That is, we consider

s+ V(X)-Vf(s,c)=¢cAs

(22)
b+ V(x) - V(cf(s, c)) = eAb,
where f is given by (15) withu = 0.25 andv =9, X = (X3, X2), V = (V1, Vo), V =
(3%, Ox,), andA = 32 + 32 . The velocity field is given by a pressure equation combine
with Darcy’s law,

—V((s, 0)Ap) =0, V = —A(S, O)A(p), (23)

wherei denotes a total mobility.

A common strategy to solve the overall system (22) and (23) is to decouple the equati
by operator splitting: First solve the pressure equation (23) with coefficients given by 1
initial fluid distribution. Then the velocity field is computed using Darcy’s law, and thi:
velocity is held fixed while the saturatiamand polymer concentratioo are advanced
forward according to (22). Then the process is repeated. In the following we will assu
that the velocity field is a given quantity and concentrate on the solution of (22).

Let Ax > 0 andAt > 0 denote the spatial and temporal discretization parameters as:
ciated with our discrete splitting method. L&t denote the front tracking solution operator
associated with the following one-dimensional system of conservation laws

%S+ Vj(X)dx, fi(s,c)=0

(24)
b+ V; (0, (cfi(s, ©) = 0.

The front tracking algorithm can easily be modified to incorporate varying velocity field
see, e.g., Lie [26] or Haugst al.[16]. Moreover, residual fluxes are identified as outlinec
above fotv = 1. Now, letP{" denote the finite difference solution operator of the following
parabolic system
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FIG. 17. Example 1. Saturation component of the solution at tiree0.4 computed by OS (left) and COS
(right) with 4 steps (upper row) and with 16 steps (lower row).
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FIG. 18. Example 1. Saturation (left) and polymer concentration (right) computed on & 257 grid with
CFL number 2.0.



660

KARLSEN ET AL.

1

09 L 0ol
08+ 08+
0.7+

086

05}

04t

0.3

02}

01

L L ' s . n . [ n
0 01 02 03 04 05 06 07 08 09 1 [} 0.1
1 1

02 03 04 05 06 07 08 09 1

09t 4 09t

08|

07}

06

051

04}

03t

02}

0.1t

05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

0 01 02 03 04
1 T T T T T T T T T 1

09

08|

0.7t

0.6

05|

04l

03|

02}

01}

& - " " N 0k N " .
06 06 07 08 09 1 0 01 02 03 04

05 066 07 08 092 1

0 01 02 03 04

FIG. 19. Example 2. Saturation and concentration profiles at tiree0.3 computed on a 129 129 grid.
The diffusion coefficient is = 0.05, 0.005, and 0.0005 from top to bottom.

s+ Vj(x)dy, 110 (x, s, ) =0 (25)
| 25
&b + V; ()3, 17 (x. 5. ©) = €02 b.

Note thatx;, i # j, act only as parameters in (25). We then introduce the followin
operator splitting solution
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(s, b)(x, nAt) ~ (8", b") = [P% o T o S o PXi o I 0 S "T(s0, bo).  (26)

ExampLE 1. In the first example, we consider a standard test case from reservoir s
ulation, the quarter five-spot case, which consists of a unit square with an injection wel
the lower left corner and a production well in upper right. A no-flow condition is specifie
along the boundaries. We consider a reservoir initially filled with pure oil into which pul
water with a polymer concentration 0.1 is injected. The diffusion coefficieistset to
0.005. To solve the parabolic systems (25), we use a componentwise upwind method.

Figure 17 shows the saturation component of the solution atttin®.4 (corresponding
to 0.4 pore volumes of fluid injected) computed by COS and OS. A reference soluti
computed on a 25% 257 grid is given in Fig. 18. Due to very large velocities near the
wells, we use small splitting steps (CFL number 2.0) up to time0.02 to stabilize the
profile and then four splitting steps to reach final titne 0.4. The splitting steps have
been intentionally chosen large to demonstrate the error mechanisms in the shock la
hence the lack of symmetry due to dimensional splitting errors. Much of the dimensiol
splitting error is removed by increasing the number of splitting steps to 16, for examg
Furthermore, we see that OS and COS with 16 steps coincide except near the diag
where the velocity field is sufficiently strong to form discontinuities in the hyperbolic stej
and hence residual fluxes.

ExaMPLE 2. In the second example, we add a heterogeneous permeability field to
quarter five-spot. The permeability field is realized as a log-Gaussian random field. L
to the heterogeneity, the water front will contain viscous fingers. To resolve the finger
properly, one has to reduce the splitting steps compared with the example above. Figur
shows saturation and polymer concentration profiles at time0.3 for three different
values ofe. The length of the splitting steps varies according to a CFL target 4.0 for tl
hyperbolic steps. Although residual fluxes are seldom identified in these simulations |
¢ = 0.05 and 0.005), the mechanism is embedded and is automatically invoked when
necessary to prevent viscous splitting errors.

5. CONCLUDING REMARKS

We have demonstrated numerically that operator splitting (OS) methods for system
convection—diffusion equations in one space dimension have a tendency to be too diffu
near viscous shock waves. In the scalar case [23, 20], this is related to the fact that the en
condition (Oleinik’s convexification criterion) forces the hyperbolic solver in the convectic
step to throw away information about the structure of the viscous shock waves, at least w
the splitting step is large, thereby creating an entropy loss. To reduce this temporal split
error, Karlsen and Risebro [23] (see also [12, 20]) introduced the corrected operator split
(COS) method for scalar convection—diffusion equations. The idea behind the scalar (
method is to use the wave structure from the convection step to identify where the nonlir
splitting error (or entropy loss) occurs. The potential error is then compensated for in
diffusion step (or in a separate correction step).

In the present paper, we have outlined the mechanisms behind the splitting error
systems of convection—diffusion equations. Similar to the scalar case, the splitting errc
intimately related to the local linearizations introduced implicitly in the convection stej
due to the use of an entropy condition. Moreover, we have proposed a working COS met
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for systems. A front tracking method [27-29] for systems of conservation laws, which
turn relies on a Riemann solver, is an important part of this COS method. The proposed (
method has been applied to &2 system modeling two-phase, multicomponent flow anc
atriangular 2x 2 system modeling three-phase flow. The numerical examples demonstr
that the COS method is significantly more accurate than the corresponding OS met
when the splitting step is large and the solution consists of (moving) viscous shock wa
We have extended the COS method to two-dimensional systems of convection—diffus
equations by means of dimensional splitting and applied it to a polymer system witt

dr

iving velocity field. In closing, we mention that the COS approach can be implement

for other systems. Moreover, we believe that one can replace the front tracking metho
the COS approach by the Godunov method, for example.
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